Recent advances in extracellular matrix manipulation for kidney organoid research.

Ren Wang, Yufei Sui, Qiuyan Liu, Yucui Xiong, Shanshan Li, Wu Guo, Yiwei Xu, Sheng Zhang
Author Information
  1. Ren Wang: Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
  2. Yufei Sui: Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
  3. Qiuyan Liu: GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
  4. Yucui Xiong: Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
  5. Shanshan Li: GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
  6. Wu Guo: Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
  7. Yiwei Xu: Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
  8. Sheng Zhang: Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.

Abstract

The kidney plays a crucial role in maintaining the body's microenvironment homeostasis. However, current treatment options and therapeutic agents for chronic kidney disease (CKD) are limited. Fortunately, the advent of kidney organoids has introduced a novel model for studying kidney diseases and drug screening. Despite significant efforts has been leveraged to mimic the spatial-temporal dynamics of fetal renal development in various types of kidney organoids, there is still a discrepancy in cell types and maturity compared to native kidney tissue. The extracellular matrix (ECM) plays a crucial role in regulating cellular signaling, which ultimately affects cell fate decision. As a result, ECM can refine the microenvironment of organoids, promoting their efficient differentiation and maturation. This review examines the existing techniques for culturing kidney organoids, evaluates the strengths and weaknesses of various types of kidney organoids, and assesses the advancements and limitations associated with the utilization of the ECM in kidney organoid culture. Additionally, it presents a discussion on constructing specific physiological and pathological microenvironments using decellularized extracellular matrix during certain developmental stages or disease occurrences, aiding the development of kidney organoids and disease models.

Keywords

References

  1. Trends Cell Biol. 2022 Oct;32(10):883-895 [PMID: 35410820]
  2. Matrix Biol. 2018 Nov;73:77-104 [PMID: 29524630]
  3. Nat Commun. 2024 Jan 2;15(1):143 [PMID: 38168066]
  4. Biomaterials. 2024 Jun;307:122524 [PMID: 38513435]
  5. Development. 2019 Mar 7;146(5): [PMID: 30846463]
  6. Cell Stem Cell. 2019 Sep 5;25(3):373-387.e9 [PMID: 31303547]
  7. Nat Biotechnol. 2015 Nov;33(11):1193-200 [PMID: 26458176]
  8. Med Sci Monit. 2024 May 06;30:e943500 [PMID: 38706186]
  9. Trends Mol Med. 2017 Mar;23(3):246-263 [PMID: 28188103]
  10. Curr Protoc. 2024 Jul;4(7):e1096 [PMID: 38984433]
  11. Nat Commun. 2022 Mar 30;13(1):1692 [PMID: 35354790]
  12. Development. 2006 Oct;133(19):3787-96 [PMID: 16943279]
  13. Int J Mol Sci. 2023 Feb 01;24(3): [PMID: 36769148]
  14. Nat Biotechnol. 2019 Mar;37(3):303-313 [PMID: 30833775]
  15. Cell Stem Cell. 2017 Dec 7;21(6):730-746.e6 [PMID: 29129523]
  16. J Clin Invest. 2024 May 7;134(13): [PMID: 38713523]
  17. Nat Rev Nephrol. 2024 Sep;20(9):586-602 [PMID: 38977884]
  18. Genes Dev. 2019 Oct 1;33(19-20):1319-1345 [PMID: 31575677]
  19. Clin J Am Soc Nephrol. 2022 Aug;17(8):1220-1233 [PMID: 35273009]
  20. Kidney Int. 2005 Jun;67(6):2089-100 [PMID: 15882252]
  21. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  22. Cell Stem Cell. 2014 Jan 2;14(1):53-67 [PMID: 24332837]
  23. Cell Stem Cell. 2024 May 2;31(5):772-787.e11 [PMID: 38565140]
  24. J Am Soc Nephrol. 2021 Jul;32(7):1713-1732 [PMID: 34049963]
  25. J Nanobiotechnology. 2022 Jul 15;20(1):326 [PMID: 35841001]
  26. Dev Cell. 2022 Feb 28;57(4):480-495.e6 [PMID: 35150612]
  27. Cell Stem Cell. 2018 Dec 6;23(6):869-881.e8 [PMID: 30449713]
  28. Nat Commun. 2015 Dec 04;6:10027 [PMID: 26634297]
  29. Adv Mater. 2024 Apr;36(14):e2308325 [PMID: 38180232]
  30. Nature. 2015 Oct 22;526(7574):564-8 [PMID: 26444236]
  31. Front Physiol. 2022 Dec 07;13:1048738 [PMID: 36569770]
  32. Differentiation. 2022 Mar-Apr;124:28-42 [PMID: 35158252]
  33. Nat Commun. 2020 May 8;11(1):2280 [PMID: 32385245]
  34. J Zhejiang Univ Sci B. 2022 Jul 15;23(7):564-577 [PMID: 35794686]
  35. Biomater Sci. 2022 May 31;10(11):2972-2990 [PMID: 35521809]
  36. Nat Mater. 2019 Apr;18(4):397-405 [PMID: 30778227]
  37. Regen Ther. 2021 May 18;18:88-96 [PMID: 34095366]
  38. Nat Cell Biol. 2014 Jan;16(1):118-26 [PMID: 24335651]
  39. Kidney Int. 2024 Jun 18;: [PMID: 38901605]
  40. Genome Med. 2019 Jan 23;11(1):3 [PMID: 30674341]
  41. Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2216836120 [PMID: 36724260]
  42. EMBO Mol Med. 2021 Jul 7;13(7):e13067 [PMID: 34165243]
  43. Kidney Int. 2023 Jun;103(6):1063-1076 [PMID: 36805449]
  44. EMBO Rep. 2024 Jul;25(7):3090-3115 [PMID: 38871984]
  45. Stem Cell Res Ther. 2024 May 3;15(1):132 [PMID: 38702808]
  46. Bioact Mater. 2021 Jan 16;6(7):2187-2197 [PMID: 33511316]
  47. Nat Methods. 2013 Jan;10(1):84-9 [PMID: 23223155]
  48. Acta Biomater. 2024 May;180:295-307 [PMID: 38642787]
  49. Dev Cell. 2024 Jun 17;59(12):1506-1522.e11 [PMID: 38582082]
  50. Dev Dyn. 2001 May;221(1):37-47 [PMID: 11357192]
  51. ACS Biomater Sci Eng. 2020 Nov 9;6(11):6263-6275 [PMID: 33449655]
  52. Cells. 2023 Feb 08;12(4): [PMID: 36831216]
  53. Adv Mater. 2024 Aug;36(34):e2400306 [PMID: 38762768]
  54. Adv Sci (Weinh). 2022 May;9(15):e2103526 [PMID: 35322595]
  55. J Vis Exp. 2021 Apr 13;(170): [PMID: 33938892]
  56. Front Cell Dev Biol. 2024 Jun 03;12:1395723 [PMID: 38887514]
  57. J Am Soc Nephrol. 2014 May;25(5):939-51 [PMID: 24436468]
  58. Development. 2020 May 28;147(10): [PMID: 32467294]
  59. J Am Soc Nephrol. 2018 Jan;29(1):13-23 [PMID: 29038287]
  60. J Am Soc Nephrol. 2022 Mar;33(3):487-501 [PMID: 35031569]
  61. Kidney Int. 2024 Apr;105(4):702-708 [PMID: 38296026]
  62. Nat Commun. 2021 Oct 14;12(1):6013 [PMID: 34650038]
  63. Biomaterials. 2024 Apr;306:122473 [PMID: 38335719]
  64. Nano Converg. 2021 Nov 8;8(1):35 [PMID: 34748091]
  65. Annu Rev Cell Dev Biol. 2018 Oct 6;34:427-450 [PMID: 30125139]
  66. Lancet. 2020 Feb 29;395(10225):709-733 [PMID: 32061315]
  67. World J Stem Cells. 2024 Feb 26;16(2):114-125 [PMID: 38455108]
  68. Matrix Biol. 2022 Aug;111:26-52 [PMID: 35537652]
  69. Nat Mater. 2021 Feb;20(2):260-271 [PMID: 33230326]
  70. Stem Cell Reports. 2018 Aug 14;11(2):470-484 [PMID: 30033089]
  71. Nat Methods. 2019 Mar;16(3):255-262 [PMID: 30742039]
  72. Nat Protoc. 2023 Nov;18(11):3229-3252 [PMID: 37770563]
  73. Cell Stem Cell. 2021 Apr 1;28(4):671-684.e6 [PMID: 33378647]
  74. Nat Rev Nephrol. 2022 Oct;18(10):628-642 [PMID: 35869368]
  75. Int J Nephrol. 2020 Nov 29;2020:8846622 [PMID: 33312728]
  76. Am J Physiol Renal Physiol. 2024 Apr 1;326(4):F563-F583 [PMID: 38299215]
  77. Cell Stem Cell. 2024 Jun 6;31(6):921-939.e17 [PMID: 38692273]
  78. Trends Cell Biol. 2024 Apr;34(4):299-311 [PMID: 37865608]
  79. Adv Sci (Weinh). 2021 Nov;8(22):e2100128 [PMID: 34617419]
  80. Nat Protoc. 2021 Apr;16(4):2023-2050 [PMID: 33674788]
  81. Matrix Biol. 2023 Aug;121:167-178 [PMID: 37437747]
  82. Dev Cell. 2013 May 28;25(4):402-16 [PMID: 23685250]
  83. Nat Commun. 2024 May 17;15(1):4200 [PMID: 38760342]
  84. J Biol Eng. 2024 Feb 22;18(1):17 [PMID: 38389090]
  85. Annu Rev Physiol. 2022 Feb 10;84:507-531 [PMID: 34843404]
  86. Nat Commun. 2022 Oct 8;13(1):5943 [PMID: 36209212]
  87. Nat Commun. 2021 Jun 15;12(1):3641 [PMID: 34131121]
  88. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2219699120 [PMID: 37155865]
  89. Nat Biotechnol. 2023 Feb;41(2):252-261 [PMID: 36038632]
  90. Sci Adv. 2024 May 17;10(20):eadl3511 [PMID: 38748808]
  91. Nat Commun. 2015 Oct 23;6:8715 [PMID: 26493500]
  92. Acta Physiol (Oxf). 2020 Sep;230(1):e13491 [PMID: 32365407]
  93. Cell Rep. 2020 Dec 15;33(11):108514 [PMID: 33326782]
  94. Cell Stem Cell. 2016 Oct 6;19(4):516-529 [PMID: 27570066]
  95. Cell Stem Cell. 2018 Jun 01;22(6):929-940.e4 [PMID: 29779890]
  96. Biofabrication. 2024 Apr 08;16(3): [PMID: 38547531]
  97. Annu Rev Biomed Eng. 2024 Jul;26(1):383-414 [PMID: 38424088]
  98. J Am Soc Nephrol. 2021 Jul;32(7):1649-1665 [PMID: 33875569]
  99. Cell Prolif. 2023 Sep;56(9):e13429 [PMID: 36807637]
  100. Cell Rep. 2020 Jul 28;32(4):107963 [PMID: 32726627]

Word Cloud

Created with Highcharts 10.0.0kidneyorganoidsextracellularmatrixdiseasemicroenvironmenttypesECMplayscrucialroledevelopmentvariouscellorganoiddecellularizedmodelsmaintainingbody'shomeostasisHowevercurrenttreatmentoptionstherapeuticagentschronicCKDlimitedFortunatelyadventintroducednovelmodelstudyingdiseasesdrugscreeningDespitesignificanteffortsleveragedmimicspatial-temporaldynamicsfetalrenalstilldiscrepancymaturitycomparednativetissueregulatingcellularsignalingultimatelyaffectsfatedecisionresultcanrefinepromotingefficientdifferentiationmaturationreviewexaminesexistingtechniquesculturingevaluatesstrengthsweaknessesassessesadvancementslimitationsassociatedutilizationcultureAdditionallypresentsdiscussionconstructingspecificphysiologicalpathologicalmicroenvironmentsusingcertaindevelopmentalstagesoccurrencesaidingRecentadvancesmanipulationresearch

Similar Articles

Cited By