Differential impact of plant-based selenium nanoparticles on physio-biochemical properties, antioxidant defense system and protein regulation in fruits of huanglongbing-infected 'Kinnow' mandarin plants.

Muhammad Ikram, Naveed Iqbal Raja, Azza H Mohamed, Zia-Ur-Rehman Mashwani, Ahmad A Omar, Hassan Gharibi, Roman A Zubarev
Author Information
  1. Muhammad Ikram: Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  2. Naveed Iqbal Raja: Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  3. Azza H Mohamed: Department of Agricultural Chemistry, College of Agriculture, Mansoura University, Mansoura, Egypt.
  4. Zia-Ur-Rehman Mashwani: Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  5. Ahmad A Omar: Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
  6. Hassan Gharibi: Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
  7. Roman A Zubarev: Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

Abstract

Huanglongbing disease (HLB) is the most severe citrus disease destroying L. 'Kinnow', the most commonly grown mandarin in Pakistan. It is caused by Liberibacter bacterial species and it spreads through the sucking Asian citrus psyllid insect. The current study was designed to investigate the potential impact of plant extract mediated selenium nanoparticles (SeNPs) on antioxidant defense system, fruit quality and protein regulation in the fruits of HLB-infected 'Kinnow' mandarin plants. Garlic cloves extract was used as reducing and capping agent for the synthesis of SeNPs. Various concentrations of SeNPs (25, 50, 75, and 100 mg L) were exogeneously applied to HLB-positive citrus plants. SeNPs at the concentration of 75 mg L affected positively fruit physio-biochemical parameters, e.g., peel thickness, peel weight, fruit weight, fruit diameter, total soluble solids, juice volume, ascorbic acid content and reduced total acidity. Furthermore, SeNPs also enhanced the amounts of total protein and total sugar as well as elevated antioxidant enzymes, e.g., superoxide dismutase, peroxidases, and catalases. Non-enzymatic antioxidant content, e.g., total phenolic and total flavonoids, was also elevated. Proteomics analysis revealed that exposure to SeNPs at the concentration of 75 mg·L significantly altered in HLB infected mandarin fruting plants the expression of proteins associated with transcription, protection, cell wall biogenesis, cell wall organization, reproduction, stamen formation, embryo development, inflorescence development, as well as translation and response to oxidative stress. Our results revealed that foliar application of SeNPs influences the protein contents positively, therefore ameliorating fruit physio-biochemical quality by boosting antioxidant defense systems of HLB-infected 'Kinnow' mandarin plants.

Keywords

References

  1. Anal Biochem. 1971 Nov;44(1):276-87 [PMID: 4943714]
  2. Environ Pollut. 2023 Oct 1;334:122008 [PMID: 37356795]
  3. Front Plant Sci. 2022 Apr 25;13:798751 [PMID: 35548317]
  4. Sci Total Environ. 2022 Dec 20;853:158673 [PMID: 36096215]
  5. Ecotoxicol Environ Saf. 2021 Apr 1;212:111962 [PMID: 33550082]
  6. Microb Pathog. 2024 Jul;192:106688 [PMID: 38750772]
  7. Plant Physiol. 1977 Feb;59(2):309-14 [PMID: 16659839]
  8. J Dairy Sci. 2006 Mar;89(3):859-61 [PMID: 16507678]
  9. Front Bioeng Biotechnol. 2021 Jan 25;8:624621 [PMID: 33569376]
  10. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:127-158 [PMID: 15012285]
  11. Plant Physiol Biochem. 2020 Mar;148:70-79 [PMID: 31945669]
  12. Molecules. 2019 Aug 21;24(17): [PMID: 31438533]
  13. Plant Sci. 2012 Apr;185-186:118-30 [PMID: 22325873]
  14. Front Plant Sci. 2019 Jan 22;9:1976 [PMID: 30723488]
  15. Environ Pollut. 2019 Oct;253:246-258 [PMID: 31319241]
  16. Plant Physiol Biochem. 2017 Jan;110:194-209 [PMID: 27269705]
  17. AMB Express. 2019 Sep 14;9(1):147 [PMID: 31522337]
  18. Molecules. 2021 Jun 12;26(12): [PMID: 34204666]
  19. Methods Mol Biol. 1994;32:5-8 [PMID: 7951748]
  20. Biomolecules. 2019 Dec 28;10(1): [PMID: 31905696]
  21. Sci Rep. 2020 Oct 19;10(1):17672 [PMID: 33077742]
  22. J Proteomics. 2016 Jun 30;143:136-150 [PMID: 27079982]
  23. Part Fibre Toxicol. 2015 Nov 02;12:36 [PMID: 26525058]
  24. Environ Sci Technol. 2018 Mar 6;52(5):2451-2467 [PMID: 29377685]
  25. Front Plant Sci. 2024 Mar 22;15:1398469 [PMID: 38584947]
  26. Plants (Basel). 2024 Jul 23;13(15): [PMID: 39124140]
  27. Biochimie. 2015 Feb;109:1-17 [PMID: 25433209]
  28. Funct Plant Biol. 2005 Jul;32(6):481-494 [PMID: 32689149]
  29. Plants (Basel). 2020 Mar 21;9(3): [PMID: 32245198]
  30. Plants (Basel). 2023 Feb 14;12(4): [PMID: 36840201]
  31. Nanomaterials (Basel). 2022 Jan 22;12(3): [PMID: 35159701]
  32. BMC Plant Biol. 2016 Jul 28;16(1):167 [PMID: 27465111]
  33. Biochim Biophys Acta. 2016 Nov;1864(11):1586-98 [PMID: 27530299]
  34. Food Chem. 2019 Mar 15;276:680-691 [PMID: 30409648]
  35. Biol Trace Elem Res. 2011 Dec;143(3):1758-76 [PMID: 21347652]
  36. Int J Nanomedicine. 2021 Jan 12;16:249-268 [PMID: 33469285]
  37. Front Plant Sci. 2017 Nov 06;8:1887 [PMID: 29163609]
  38. J Exp Bot. 2007;58(5):1161-71 [PMID: 17244628]
  39. Mol Plant Pathol. 2021 Sep;22(9):1092-1108 [PMID: 34245085]
  40. J Biotechnol. 2021 Jan 10;325:196-206 [PMID: 33164822]
  41. Molecules. 2017 Mar 30;22(4): [PMID: 28358332]
  42. J Proteomics. 2015 Jun 03;122:100-18 [PMID: 25857275]
  43. Methods Enzymol. 1984;105:121-6 [PMID: 6727660]
  44. Molecules. 2022 Jul 02;27(13): [PMID: 35807519]
  45. ACS Omega. 2023 Jan 05;8(3):3354-3366 [PMID: 36713727]
  46. Plant Cell Rep. 2024 Apr 4;43(4):113 [PMID: 38573519]
  47. Ecotoxicol Environ Saf. 2008 Jun;70(2):223-30 [PMID: 17767957]
  48. Front Plant Sci. 2017 Jan 11;7:2074 [PMID: 28123395]
  49. Plant Cell. 2024 Jan 30;36(2):471-488 [PMID: 37820743]
  50. Sci Rep. 2017 Feb 07;7:42039 [PMID: 28169318]

Word Cloud

Created with Highcharts 10.0.0SeNPsmandarintotalantioxidantfruitplantsL'Kinnow'proteincitrusseleniumnanoparticlesdefense75physio-biochemicalegdiseaseHLBimpactextractsystemqualityregulationfruitsHLB-infectedmgconcentrationpositivelypeelweightcontentalsowellelevatedrevealedcellwalldevelopmentHuanglongbingseveredestroyingcommonlygrownPakistancausedLiberibacterbacterialspeciesspreadssuckingAsianpsyllidinsectcurrentstudydesignedinvestigatepotentialplantmediatedGarlicclovesusedreducingcappingagentsynthesisVariousconcentrations2550100exogeneouslyappliedHLB-positiveaffectedparametersthicknessdiametersolublesolidsjuicevolumeascorbicacidreducedacidityFurthermoreenhancedamountssugarenzymessuperoxidedismutaseperoxidasescatalasesNon-enzymaticphenolicflavonoidsProteomicsanalysisexposuremg·LsignificantlyalteredinfectedfrutingexpressionproteinsassociatedtranscriptionprotectionbiogenesisorganizationreproductionstamenformationembryoinflorescencetranslationresponseoxidativestressresultsfoliarapplicationinfluencescontentsthereforeamelioratingboostingsystemsDifferentialplant-basedpropertieshuanglongbing-infectedCitrusreticulataKinnowhuanglongbingnanobiotechnology

Similar Articles

Cited By