Emergence of steady quantum transport in a superconducting processor.

Pengfei Zhang, Yu Gao, Xiansong Xu, Ning Wang, Hang Dong, Chu Guo, Jinfeng Deng, Xu Zhang, Jiachen Chen, Shibo Xu, Ke Wang, Yaozu Wu, Chuanyu Zhang, Feitong Jin, Xuhao Zhu, Aosai Zhang, Yiren Zou, Ziqi Tan, Zhengyi Cui, Zitian Zhu, Fanhao Shen, Tingting Li, Jiarun Zhong, Zehang Bao, Liangtian Zhao, Jie Hao, Hekang Li, Zhen Wang, Chao Song, Qiujiang Guo, H Wang, Dario Poletti
Author Information
  1. Pengfei Zhang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  2. Yu Gao: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  3. Xiansong Xu: Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore, Singapore.
  4. Ning Wang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  5. Hang Dong: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  6. Chu Guo: Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, China. ORCID
  7. Jinfeng Deng: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  8. Xu Zhang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  9. Jiachen Chen: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China.
  10. Shibo Xu: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  11. Ke Wang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  12. Yaozu Wu: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  13. Chuanyu Zhang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China.
  14. Feitong Jin: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  15. Xuhao Zhu: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  16. Aosai Zhang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China.
  17. Yiren Zou: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  18. Ziqi Tan: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  19. Zhengyi Cui: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China.
  20. Zitian Zhu: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  21. Fanhao Shen: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  22. Tingting Li: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  23. Jiarun Zhong: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  24. Zehang Bao: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  25. Liangtian Zhao: Institute of Automation, Chinese Academy of Sciences, Beijing, China.
  26. Jie Hao: Institute of Automation, Chinese Academy of Sciences, Beijing, China. jie.hao@ia.ac.cn. ORCID
  27. Hekang Li: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  28. Zhen Wang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  29. Chao Song: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  30. Qiujiang Guo: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. ORCID
  31. H Wang: School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China. hhwang@zju.edu.cn. ORCID
  32. Dario Poletti: Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore, Singapore. dario_poletti@sutd.edu.sg. ORCID

Abstract

Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter.

References

  1. Phys Rev A. 1991 Feb 15;43(4):2046-2049 [PMID: 9905246]
  2. Phys Rev Lett. 2004 Oct 1;93(14):142002 [PMID: 15524783]
  3. Nature. 2022 Apr;604(7906):451-456 [PMID: 35444318]
  4. Nature. 2011 Feb 24;470(7335):486-91 [PMID: 21350481]
  5. Phys Rev Lett. 2024 Oct 18;133(16):163402 [PMID: 39485954]
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012131 [PMID: 24580196]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022104 [PMID: 26382341]
  8. Phys Rev Lett. 2019 Mar 1;122(8):080603 [PMID: 30932621]
  9. Rep Prog Phys. 2018 Aug;81(8):082001 [PMID: 29862983]
  10. Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8563-8568 [PMID: 30093388]
  11. Phys Rev Lett. 2021 Jul 9;127(2):020602 [PMID: 34296924]
  12. Nature. 2012 Dec 20;492(7429):401-5 [PMID: 23257882]
  13. Science. 2013 Nov 8;342(6159):713-5 [PMID: 24158905]
  14. Phys Rev Lett. 2006 Feb 10;96(5):050403 [PMID: 16486907]
  15. Science. 2012 Aug 31;337(6098):1069-71 [PMID: 22859818]
  16. Science. 2006 Sep 8;313(5792):1423-5 [PMID: 16960003]
  17. Phys Rev Lett. 2008 May 2;100(17):175702 [PMID: 18518309]
  18. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Aug;50(2):888-901 [PMID: 9962049]
  19. Phys Rev E. 2018 Jun;97(6-1):062129 [PMID: 30011447]
  20. Phys Rev Lett. 2009 Mar 20;102(11):110403 [PMID: 19392176]
  21. Science. 2015 Dec 18;350(6267):1498-501 [PMID: 26680191]
  22. Nature. 2010 Sep 30;467(7315):570-3 [PMID: 20882012]
  23. Science. 2016 Aug 19;353(6301):794-800 [PMID: 27540168]
  24. Science. 2021 May 28;372(6545):948-952 [PMID: 33958483]
  25. Entropy (Basel). 2024 May 17;26(5): [PMID: 38785678]
  26. Sci Adv. 2023 Dec 22;9(51):eadj3822 [PMID: 38134272]
  27. Phys Rev Lett. 2017 Nov 3;119(18):180511 [PMID: 29219550]
  28. Phys Rev Lett. 2007 Oct 19;99(16):160404 [PMID: 17995226]
  29. Nature. 2008 Apr 17;452(7189):854-8 [PMID: 18421349]
  30. Science. 2024 Mar 22;383(6689):1332-1337 [PMID: 38513021]
  31. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25402-25406 [PMID: 32989132]
  32. Phys Rev Lett. 2006 Aug 4;97(5):050502 [PMID: 17026085]
  33. Nature. 2017 Nov 29;551(7682):579-584 [PMID: 29189778]
  34. Science. 2012 Sep 14;337(6100):1318-22 [PMID: 22956685]

Grants

  1. 92365301, 12174342, 12274368, 12274367, 12305049, and U20A2076/National Natural Science Foundation of China (National Science Foundation of China)
  2. MOE-T2EP50120-0019/Ministry of Education - Singapore (MOE)

Word Cloud

Created with Highcharts 10.0.0quantumbathstransportsteadynon-equilibriumcurrentsthermodynamicmacroscopicmicroscopicsuperconductingprocessordemonstrateemulatingexperimentalpropertiesNon-equilibriumcrucialtechnologicaladvancesrangingnanoelectronicsthermalmanagementessencedealscoherenttransferenergyquasi-particleschannelscompleteunderstandingthusrequiresabilitysimulateprobephysicsequalfootingUsingemergencequbitladdersrealisingparticleexperimentallyshowindependentdetailsbathinitialisationtemporalfluctuationsdecreaserapidlysizepredictedcharacteristicsevidencepure-statestatisticalmechanicsprethermalisationmany-bodysystemsFurthermoreutilisingprecisecontrolsmeasurementssingle-siteresolutioncapabilitytunemanipulatingincludingfillingspectralinvestigationpaveswaynewgenerationexplorationstronglycorrelatedmatterEmergence

Similar Articles

Cited By