Data-driven models for microfluidics: A short review.

Yu Chang, Qichen Shang, Zifei Yan, Jian Deng, Guangsheng Luo
Author Information
  1. Yu Chang: Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China. ORCID
  2. Qichen Shang: Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China. ORCID
  3. Zifei Yan: Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China. ORCID
  4. Jian Deng: Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China. ORCID
  5. Guangsheng Luo: Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China. ORCID

Abstract

Microfluidic devices have many unique practical applications across a wide range of fields, making it important to develop accurate models of these devices, and many different models have been developed. Existing modeling methods mainly include mechanism derivation and semi-empirical correlations, but both are not universally applicable. In order to achieve a more accurate and general modeling process, the use of data-driven modeling has been studied recently. This review highlights recent advances in the application of data-driven modeling techniques for simulating and designing microfluidic devices. First, it introduces the application of traditional modeling approaches in microfluidics; subsequently, through different database sources, it reviews studies on data-driven modeling in three categories; and finally, it raises some open issues that require further investigation.

References

  1. Angew Chem Int Ed Engl. 2010 Aug 9;49(34):5846-68 [PMID: 20572214]
  2. Lab Chip. 2022 Dec 6;22(24):4860-4870 [PMID: 36377409]
  3. Biomicrofluidics. 2024 Mar 25;18(2):024102 [PMID: 38560343]
  4. Biomicrofluidics. 2023 Nov 01;17(6):064102 [PMID: 37928799]
  5. Adv Sci (Weinh). 2023 Feb;10(5):e2205382 [PMID: 36538743]
  6. Micromachines (Basel). 2024 Jul 10;15(7): [PMID: 39064412]
  7. Lab Chip. 2023 Nov 21;23(23):4997-5008 [PMID: 37909215]
  8. Lab Chip. 2021 Jan 21;21(2):296-309 [PMID: 33325947]
  9. Nature. 2007 Dec 20;450(7173):1235-9 [PMID: 18097410]
  10. Lab Chip. 2006 Mar;6(3):437-46 [PMID: 16511628]
  11. Front Bioeng Biotechnol. 2023 Jun 07;11:1208648 [PMID: 37351472]
  12. Lab Chip. 2023 May 30;23(11):2497-2513 [PMID: 37199118]
  13. Lab Chip. 2021 Jun 29;21(13):2544-2556 [PMID: 33998624]
  14. Angew Chem Int Ed Engl. 2006 Nov 13;45(44):7336-56 [PMID: 17086584]
  15. Lab Chip. 2022 Oct 11;22(20):3848-3859 [PMID: 36106479]
  16. Lab Chip. 2024 Feb 27;24(5):1419-1440 [PMID: 38174821]
  17. Nat Commun. 2019 Jun 7;10(1):2528 [PMID: 31175303]
  18. IEEE Trans Biomed Circuits Syst. 2024 Jun;18(3):622-635 [PMID: 38393851]
  19. Lab Chip. 2016 Oct 18;16(21):4212-4219 [PMID: 27713978]
  20. Nat Commun. 2021 Jan 4;12(1):25 [PMID: 33397940]
  21. Nat Commun. 2024 Jan 2;15(1):83 [PMID: 38167827]
  22. Nature. 2006 Jul 27;442(7101):368-73 [PMID: 16871203]
  23. Theranostics. 2023 Aug 15;13(13):4526-4558 [PMID: 37649608]
  24. Lab Chip. 2022 Aug 9;22(16):2925-2937 [PMID: 35904162]
  25. Nat Biotechnol. 2017 Jul;35(7):640-646 [PMID: 28553940]
  26. Lab Chip. 2022 Oct 25;22(21):4067-4080 [PMID: 36214344]
  27. Nature. 2014 Mar 13;507(7491):181-9 [PMID: 24622198]
  28. iScience. 2024 Feb 28;27(4):109326 [PMID: 38510144]
  29. Lab Chip. 2023 Nov 7;23(22):4888-4900 [PMID: 37873702]

Word Cloud

Created with Highcharts 10.0.0modelingdevicesmodelsdata-drivenmanyaccuratedifferentreviewapplicationMicrofluidicuniquepracticalapplicationsacrosswiderangefieldsmakingimportantdevelopdevelopedExistingmethodsmainlyincludemechanismderivationsemi-empiricalcorrelationsuniversallyapplicableorderachievegeneralprocessusestudiedrecentlyhighlightsrecentadvancestechniquessimulatingdesigningmicrofluidicFirstintroducestraditionalapproachesmicrofluidicssubsequentlydatabasesourcesreviewsstudiesthreecategoriesfinallyraisesopenissuesrequireinvestigationData-drivenmicrofluidics:short

Similar Articles

Cited By