Green synthesis of Brassica carinata microgreen silver nanoparticles, characterization, safety assessment, and antimicrobial activities.

Dogfounianalo Somda, Joel L Bargul, John M Wesonga, Sabina Wangui Wachira
Author Information
  1. Dogfounianalo Somda: Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology, and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya. metuorssomda@gmail.com.
  2. Joel L Bargul: Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya.
  3. John M Wesonga: Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya.
  4. Sabina Wangui Wachira: Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), P.O. Box 54840-00200, Nairobi, Kenya.

Abstract

Nanotechnology has been a central focus of scientific investigation over the past decades owing to its versatile applications. The synthesis of silver nanoparticles (AgNPs) through plant secondary metabolites is a cost-effective and eco-friendly approach. The present study employed Brassica carinata microgreen extracts (BCME) to promote the reduction of silver nitrate (AgNO) salt into Brassica carinata microgreen silver nanoparticles (BCM-AgNPs). The physicochemical properties of the biosynthesized AgNPs were characterized through both spectroscopy and microscopy techniques. Furthermore, the antimicrobial property of the biosynthesized AgNPs was assessed against six selected pathogenic microorganisms, and finally, their safety was evaluated on a normal Vero cell line through an MTT cytotoxicity assay. The UV-visible spectrum revealed that BCM-AgNPs exhibited an absorption peak at 420 nm. The potential functional groups involved in the biosynthesis of AgNPs were identified by Fourier transform infrared (FTIR) analysis. Scanning electron microscopy (SEM) revealed a spherical nature of the biosynthesized AgNPs. Transmission electron microscopy (TEM) analysis revealed the crystallinity of the AgNPs, averaging 34.68 nm in size. X-ray diffraction (XRD) investigation further confirmed the crystalline structure of the AgNPs. The zeta potential exhibited a significant value of -���22.5��������1.16 mV. Regarding the antimicrobial potential, BCM-AgNPs exhibited promising antimicrobial activity against the tested pathogens, with a minimum inhibitory concentration (MIC) of 62.5 ��g/mL observed in Pseudomonas aeruginosa. Further cytotoxicity assessment of BCM-AgNPs conducted on Vero cells demonstrated their safety. This study presents a novel approach to synthesizing AgNPs using a nutraceutical microgreen, offering a biocompatible and promising alternative for combating multi-drug resistance.

Keywords

References

  1. Sci Rep. 2023 Sep 27;13(1):16270 [PMID: 37758773]
  2. J Ethnopharmacol. 2023 Apr 6;305:116121 [PMID: 36599374]
  3. Nanomedicine (Lond). 2023 Feb;18(5):471-484 [PMID: 37170884]
  4. Front Chem. 2023 Feb 22;11:1065986 [PMID: 36909711]
  5. Front Vet Sci. 2024 Jun 14;11:1408376 [PMID: 38948675]
  6. Nanomaterials (Basel). 2021 Apr 14;11(4): [PMID: 33919801]
  7. Int J Nanomedicine. 2014;9:121-7 [PMID: 24379670]
  8. Saudi J Biol Sci. 2022 Apr;29(4):2772-2781 [PMID: 35531187]
  9. Sci Rep. 2021 Mar 16;11(1):5996 [PMID: 33727607]
  10. Front Microbiol. 2016 Nov 16;7:1831 [PMID: 27899918]
  11. Molecules. 2023 Jan 16;28(2): [PMID: 36677963]
  12. Biochem Biophys Res Commun. 2012 Aug 10;424(4):657-62 [PMID: 22771582]
  13. Materials (Basel). 2022 Dec 16;15(24): [PMID: 36556796]
  14. Appl Environ Microbiol. 2009 May;75(9):2973-6 [PMID: 19270121]
  15. Bioinorg Chem Appl. 2022 Feb 28;2022:9072508 [PMID: 35265106]
  16. Microorganisms. 2023 Feb 01;11(2): [PMID: 36838334]
  17. Pharmaceutics. 2018 May 18;10(2): [PMID: 29783687]
  18. Molecules. 2021 May 03;26(9): [PMID: 34063685]
  19. Healthcare (Basel). 2023 Jul 05;11(13): [PMID: 37444780]
  20. Int J Nanomedicine. 2014;9:1-15 [PMID: 24363556]
  21. Biomedicines. 2021 Aug 10;9(8): [PMID: 34440193]
  22. J Pharm Sci. 2014 Jul;103(7):1931-1944 [PMID: 24824033]
  23. Front Chem. 2022 Aug 29;10:952006 [PMID: 36105303]
  24. Nanomaterials (Basel). 2020 Sep 08;10(9): [PMID: 32911754]
  25. Sci Rep. 2020 Oct 8;10(1):16781 [PMID: 33033304]
  26. BMC Biotechnol. 2024 Jan 23;24(1):5 [PMID: 38263231]
  27. Sci Rep. 2024 Mar 27;14(1):7243 [PMID: 38538702]
  28. Biotechnol Lett. 2016 Jun;38(6):1015-9 [PMID: 26969604]
  29. J Funct Biomater. 2022 Nov 15;13(4): [PMID: 36412883]
  30. Int J Mol Sci. 2023 Sep 13;24(18): [PMID: 37762348]
  31. Sci Rep. 2022 May 19;12(1):8383 [PMID: 35589849]
  32. Int J Mol Sci. 2023 Mar 07;24(6): [PMID: 36982206]
  33. Oxid Med Cell Longev. 2018 Sep 26;2018:6231482 [PMID: 30356429]
  34. R Soc Open Sci. 2020 Jul 22;7(7):200065 [PMID: 32874618]
  35. J Funct Biomater. 2023 Apr 26;14(5): [PMID: 37233354]
  36. Parasitol Res. 2015 May;114(5):1817-27 [PMID: 25666372]
  37. Pharmaceutics. 2023 Mar 31;15(4): [PMID: 37111608]
  38. Exp Parasitol. 2016 Feb;161:40-7 [PMID: 26708933]
  39. Biomater Investig Dent. 2020 Jul 23;7(1):105-109 [PMID: 32939454]
  40. J Immunol Methods. 1983 Dec 16;65(1-2):55-63 [PMID: 6606682]
  41. Saudi J Biol Sci. 2021 Oct;28(10):5631-5639 [PMID: 34588874]
  42. Environ Sci Technol. 2013 Jun 4;47(11):5738-45 [PMID: 23641814]
  43. IET Nanobiotechnol. 2019 Apr;13(2):193-201 [PMID: 31051451]
  44. Front Microbiol. 2019 Apr 26;10:820 [PMID: 31110495]
  45. Food Nutr Res. 2017 Jan 31;61(1):1271527 [PMID: 28326001]
  46. Bone Joint J. 2015 May;97-B(5):582-9 [PMID: 25922449]
  47. Materials (Basel). 2015 Oct 29;8(11):7278-7308 [PMID: 28793638]
  48. Chin Med. 2016 Nov 15;11:46 [PMID: 27891174]
  49. Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:980-989 [PMID: 28415554]
  50. Evid Based Complement Alternat Med. 2023 Jan 3;2023:4125885 [PMID: 36636606]
  51. Chem Biodivers. 2023 Aug;20(8):e202300510 [PMID: 37471642]
  52. PLoS One. 2021 Mar 26;16(3):e0249253 [PMID: 33770121]
  53. Evid Based Complement Alternat Med. 2021 Feb 22;2021:8947304 [PMID: 33688369]
  54. Molecules. 2022 Jul 11;27(14): [PMID: 35889305]
  55. BMC Complement Med Ther. 2023 Apr 3;23(1):100 [PMID: 37013533]
  56. Dose Response. 2022 Apr 30;20(1):15593258221088709 [PMID: 35592270]
  57. BMC Complement Med Ther. 2024 Apr 2;24(1):137 [PMID: 38566161]
  58. Sci Rep. 2023 Sep 12;13(1):15048 [PMID: 37700007]
  59. J Clin Microbiol. 2018 Mar 26;56(4): [PMID: 29367292]
  60. Environ Res. 2023 Feb 1;218:114946 [PMID: 36493805]
  61. Sci Rep. 2023 Aug 28;13(1):14030 [PMID: 37640783]
  62. Foods. 2022 Jan 31;11(3): [PMID: 35159573]
  63. Sci Rep. 2024 Feb 19;14(1):4130 [PMID: 38374139]
  64. Int J Nanomedicine. 2023 Apr 26;18:2141-2162 [PMID: 37131545]
  65. Chin Herb Med. 2020 Nov 14;13(2):250-254 [PMID: 36117508]
  66. Front Bioeng Biotechnol. 2022 Mar 07;10:855136 [PMID: 35330628]
  67. Infect Disord Drug Targets. 2024;24(3):e250723219043 [PMID: 37909431]
  68. Appl Microbiol Biotechnol. 2021 May;105(9):3759-3770 [PMID: 33900424]
  69. Nanotechnology. 2008 Feb 20;19(7):075104 [PMID: 21817629]
  70. PeerJ. 2020 Nov 25;8:e10455 [PMID: 33304659]
  71. Int J Mol Sci. 2016 Sep 13;17(9): [PMID: 27649147]
  72. ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39027-39038 [PMID: 37581368]
  73. Front Bioeng Biotechnol. 2023 May 02;11:1159193 [PMID: 37200842]
  74. Spectrochim Acta A Mol Biomol Spectrosc. 2008 Nov 1;71(1):186-90 [PMID: 18222106]
  75. J Adv Res. 2016 Jan;7(1):17-28 [PMID: 26843966]
  76. Front Microbiol. 2019 Sep 25;10:2241 [PMID: 31608045]
  77. BMC Microbiol. 2017 Feb 16;17(1):36 [PMID: 28209130]
  78. Beilstein J Nanotechnol. 2021 Jan 25;12:102-136 [PMID: 33564607]
  79. Bioengineering (Basel). 2023 Jul 10;10(7): [PMID: 37508848]
  80. Nanotechnol Sci Appl. 2018 Mar 26;11:1-14 [PMID: 29618924]
  81. Nanoscale Res Lett. 2016 Dec;11(1):40 [PMID: 26821160]
  82. Biomed Pharmacother. 2022 Jun;150:112951 [PMID: 35447546]
  83. RSC Adv. 2022 Dec 14;12(55):35730-35743 [PMID: 36545079]
  84. Molecules. 2019 Dec 27;25(1): [PMID: 31892180]
  85. Asian Pac J Trop Biomed. 2014 May;4(Suppl 1):S1-7 [PMID: 25183064]
  86. Int J Mol Sci. 2023 Oct 04;24(19): [PMID: 37834344]

MeSH Term

Metal Nanoparticles
Silver
Brassica
Green Chemistry Technology
Vero Cells
Animals
Chlorocebus aethiops
Plant Extracts
Anti-Infective Agents
Microbial Sensitivity Tests
Spectroscopy, Fourier Transform Infrared
Anti-Bacterial Agents

Chemicals

Silver
Plant Extracts
Anti-Infective Agents
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0AgNPsmicrogreensilvernanoparticlesBrassicacarinataBCM-AgNPsantimicrobialsynthesisbiosynthesizedmicroscopysafetyrevealedexhibitedpotentialassessmentinvestigationapproachstudypropertyVerocytotoxicityanalysiselectronpromisingGreenNanotechnologycentralfocusscientificpastdecadesowingversatileapplicationsplantsecondarymetabolitescost-effectiveeco-friendlypresentemployedextractsBCMEpromotereductionnitrateAgNOsaltphysicochemicalpropertiescharacterizedspectroscopytechniquesFurthermoreassessedsixselectedpathogenicmicroorganismsfinallyevaluatednormalcelllineMTTassayUV-visiblespectrumabsorptionpeak420 nmfunctionalgroupsinvolvedbiosynthesisidentifiedFouriertransforminfraredFTIRScanningSEMsphericalnatureTransmissionTEMcrystallinityaveraging3468 nmsizeX-raydiffractionXRDconfirmedcrystallinestructurezetasignificantvalue-���225��������116mVRegardingactivitytestedpathogensminimuminhibitoryconcentrationMIC625 ��g/mLobservedPseudomonasaeruginosaconductedcellsdemonstratedpresentsnovelsynthesizingusingnutraceuticalofferingbiocompatiblealternativecombatingmulti-drugresistancecharacterizationactivitiesAntimicrobialSafetySilver

Similar Articles

Cited By