Engineering -Derived Nanoparticles for Vaccine Development.

Shubing Tang, Chen Zhao, Xianchao Zhu
Author Information
  1. Shubing Tang: Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China. ORCID
  2. Chen Zhao: Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China. ORCID
  3. Xianchao Zhu: Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China.

Abstract

The development of effective vaccines necessitates a delicate balance between maximizing immunogenicity and minimizing safety concerns. Subunit vaccines, while generally considered safe, often fail to elicit robust and durable immune responses. Nanotechnology presents a promising approach to address this dilemma, enabling subunit antigens to mimic critical aspects of native pathogens, such as nanoscale dimensions, geometry, and highly repetitive antigen display. Various expression systems, including (), yeast, baculovirus/insect cells, and Chinese hamster ovary (CHO) cells, have been explored for the production of nanoparticle vaccines. Among these, stands out due to its cost-effectiveness, scalability, rapid production cycle, and high yields. However, the manufacturing platform faces challenges related to its unfavorable redox environment for disulfide bond formation, lack of post-translational modifications, and difficulties in achieving proper protein folding. This review focuses on molecular and protein engineering strategies to enhance protein solubility in and facilitate the in vitro reassembly of virus-like particles (VLPs). We also discuss approaches for antigen display on nanocarrier surfaces and methods to stabilize these carriers. These bioengineering approaches, in combination with advanced nanocarrier design, hold significant potential for developing highly effective and affordable -derived nanovaccines, paving the way for improved protection against a wide range of infectious diseases.

Keywords

References

  1. Nanomedicine (Lond). 2016 Sep;11(17):2289-303 [PMID: 27499052]
  2. Biotechnol J. 2023 Oct;18(10):e2300130 [PMID: 37300425]
  3. Hum Vaccin Immunother. 2013 Jan;9(1):26-49 [PMID: 22995837]
  4. Int J Immunopathol Pharmacol. 2008 Jan-Mar;21(1):35-42 [PMID: 18336729]
  5. Vaccine. 2020 Apr 3;38(16):3201-3209 [PMID: 32178907]
  6. J Immunol. 2008 May 1;180(9):5816-25 [PMID: 18424700]
  7. ACS Nano. 2018 Nov 27;12(11):10665-10682 [PMID: 30234973]
  8. Semin Immunol. 2008 Feb;20(1):43-8 [PMID: 18243730]
  9. J Biol Chem. 2012 Aug 17;287(34):28686-96 [PMID: 22753413]
  10. Front Immunol. 2024 Jul 16;15:1419634 [PMID: 39081325]
  11. J Virol. 1994 Jul;68(7):4503-5 [PMID: 8207824]
  12. J Med Virol. 2001 Jun;64(2):125-32 [PMID: 11360244]
  13. Sci Rep. 2020 Oct 13;10(1):17095 [PMID: 33051543]
  14. Science. 2013 May 10;340(6133):711-6 [PMID: 23539181]
  15. Vaccine. 2019 Jul 9;37(30):4103-4110 [PMID: 31201052]
  16. Virus Res. 2015 Jun 2;204:1-5 [PMID: 25892715]
  17. Vaccine. 2021 Jan 8;39(2):263-271 [PMID: 33309483]
  18. J Am Chem Soc. 2018 Jan 17;140(2):558-561 [PMID: 29257675]
  19. Nature. 2016 Jul 7;535(7610):136-9 [PMID: 27309817]
  20. Sci Rep. 2020 Oct 23;10(1):18149 [PMID: 33097791]
  21. J Biol Chem. 2010 Oct 22;285(43):33175-33183 [PMID: 20720013]
  22. J Nanobiotechnology. 2021 Jan 19;19(1):25 [PMID: 33468139]
  23. J Biol Chem. 2005 Feb 4;280(5):3400-6 [PMID: 15557331]
  24. Vaccines (Basel). 2023 Dec 28;12(1): [PMID: 38250850]
  25. Cell Immunol. 2007 May;247(1):18-27 [PMID: 17707782]
  26. Vaccines (Basel). 2019 Nov 06;7(4): [PMID: 31698824]
  27. J Pharm Sci. 2006 Oct;95(10):2195-206 [PMID: 16871523]
  28. Immunol Lett. 2006 Jul 15;106(1):1-7 [PMID: 16765451]
  29. Structure. 2016 Jun 7;24(6):874-85 [PMID: 27276427]
  30. Signal Transduct Target Ther. 2023 Apr 29;8(1):173 [PMID: 37120453]
  31. J Virol. 1996 May;70(5):3298-301 [PMID: 8627814]
  32. Nanotheranostics. 2017 Jun 9;1(3):244-260 [PMID: 29071191]
  33. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6056-61 [PMID: 11371637]
  34. Immunol Cell Biol. 1999 Feb;77(1):1-10 [PMID: 10101680]
  35. Clin Exp Vaccine Res. 2014 Jul;3(2):227-34 [PMID: 25003097]
  36. J Inorg Biochem. 2008 Dec;102(12):2142-6 [PMID: 18834633]
  37. Virology. 2011 Feb 20;410(2):345-52 [PMID: 21185050]
  38. Vaccine. 2014 Sep 3;32(39):5041-8 [PMID: 25045806]
  39. Front Cell Infect Microbiol. 2023 Jun 22;13:1216364 [PMID: 37424789]
  40. Nat Commun. 2020 Jun 5;11(1):2841 [PMID: 32503989]
  41. Sci Rep. 2016 Jan 19;6:19234 [PMID: 26781591]
  42. Microbes Infect. 2003 Dec;5(15):1407-14 [PMID: 14670454]
  43. Mol Cell. 2000 Mar;5(3):557-67 [PMID: 10882140]
  44. Hum Vaccin Immunother. 2014;10(2):469-75 [PMID: 24161937]
  45. J Biol Chem. 2007 Oct 26;282(43):31803-11 [PMID: 17804402]
  46. Annu Rev Immunol. 1997;15:235-70 [PMID: 9143688]
  47. Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12360-5 [PMID: 26392546]
  48. J Control Release. 2014 Sep 28;190:563-79 [PMID: 24998942]
  49. Biomacromolecules. 2014 Oct 13;15(10):3794-801 [PMID: 25180761]
  50. Chembiochem. 2011 Nov 4;12(16):2441-7 [PMID: 21956837]
  51. Vaccine. 2024 Mar 19;42(8):2072-2080 [PMID: 38423815]
  52. Int J Mol Sci. 2024 Sep 12;25(18): [PMID: 39337359]
  53. ACS Nano. 2023 Dec 26;17(24):24514-24538 [PMID: 38055649]
  54. J Nanobiotechnology. 2016 Apr 27;14:30 [PMID: 27117585]
  55. Comput Struct Biotechnol J. 2015 Nov 26;14:58-68 [PMID: 26862374]
  56. Vaccine. 2017 Aug 16;35(35 Pt B):4637-4645 [PMID: 28736197]
  57. Virology. 2003 Mar 30;308(1):128-36 [PMID: 12706096]
  58. ACS Nano. 2024 Feb 27;18(8):6673-6689 [PMID: 38353701]
  59. PLoS One. 2021 Mar 4;16(3):e0247963 [PMID: 33661993]
  60. Virol J. 2012 Feb 22;9:52 [PMID: 22356831]
  61. Sci Rep. 2021 Feb 10;11(1):3498 [PMID: 33568731]
  62. Viruses. 2021 Jan 06;13(1): [PMID: 33419150]
  63. J Gen Virol. 2011 Dec;92(Pt 12):2830-2837 [PMID: 21865442]
  64. J Microbiol. 2022 Mar;60(3):335-346 [PMID: 35089583]
  65. Nano Lett. 2019 Aug 14;19(8):5469-5475 [PMID: 31251065]
  66. J Immunol. 2010 Mar 1;184(5):2233-5 [PMID: 20164433]
  67. Biomaterials. 2021 Feb;269:120650 [PMID: 33465537]
  68. PLoS One. 2015 Apr 01;10(4):e0120751 [PMID: 25830365]
  69. Nano Res. 2022;15(5):4181-4190 [PMID: 35106126]
  70. PLoS One. 2010 Mar 23;5(3):e9809 [PMID: 20352110]
  71. Nat Rev Mater. 2019 Jun;4(6):415-428 [PMID: 32523780]
  72. Expert Rev Vaccines. 2023 Jan-Dec;22(1):1168-1178 [PMID: 37990881]
  73. Annu Rev Immunol. 2010;28:157-83 [PMID: 19968561]
  74. Biomacromolecules. 2016 Jan 11;17(1):12-9 [PMID: 26646195]
  75. Biochem Biophys Res Commun. 2021 Jan 1;534:891-895 [PMID: 33213839]
  76. Mol Immunol. 2018 Jan;93:278-284 [PMID: 28802994]
  77. Biomaterials. 2021 Feb;269:120674 [PMID: 33486345]
  78. Nat Biotechnol. 2007 Oct;25(10):1159-64 [PMID: 17873867]
  79. J Virol. 2011 Jan;85(2):753-64 [PMID: 21068235]
  80. Sci Rep. 2016 May 12;6:25741 [PMID: 27170066]
  81. Biosci Trends. 2015 Aug;9(4):221-7 [PMID: 26355223]
  82. Viruses. 2024 Jun 09;16(6): [PMID: 38932228]
  83. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12992-7 [PMID: 19622744]
  84. N Engl J Med. 2003 Feb 6;348(6):518-27 [PMID: 12571259]
  85. Virology. 2013 Oct;445(1-2):2-10 [PMID: 23683837]
  86. Protein Expr Purif. 2007 Nov;56(1):72-9 [PMID: 17616400]
  87. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8098-103 [PMID: 27382168]
  88. Semin Immunol. 2017 Dec;34:123-132 [PMID: 28887001]
  89. Biomolecules. 2020 Jun 26;10(6): [PMID: 32604934]
  90. Hum Vaccin Immunother. 2012 Jun;8(6):823-7 [PMID: 22699438]
  91. J Immunol. 1994 Dec 1;153(11):4925-33 [PMID: 7963555]
  92. Nano Lett. 2019 Oct 9;19(10):7226-7235 [PMID: 31508968]
  93. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17128-33 [PMID: 25404323]
  94. Hum Vaccin Immunother. 2015;11(4):908-14 [PMID: 25714510]
  95. Int J Nanomedicine. 2023 Jun 08;18:3087-3107 [PMID: 37312932]
  96. J Virol. 2005 Nov;79(22):14017-30 [PMID: 16254337]
  97. Clin Vaccine Immunol. 2010 Jun;17(6):1027-33 [PMID: 20410327]
  98. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12986-91 [PMID: 19620712]
  99. ACS Appl Bio Mater. 2022 Jul 18;5(7):3329-3337 [PMID: 35737819]
  100. J Mol Biol. 2016 Oct 23;428(21):4267-4279 [PMID: 27591890]
  101. Immunol Rev. 1996 Oct;153:85-106 [PMID: 9010720]
  102. Nat Immunol. 2019 Mar;20(3):362-372 [PMID: 30742080]
  103. Vaccines (Basel). 2024 May 29;12(6): [PMID: 38932319]
  104. Vaccines (Basel). 2022 Dec 07;10(12): [PMID: 36560498]
  105. J Virol. 1997 Oct;71(10):7207-13 [PMID: 9311793]
  106. J Control Release. 2006 May 1;112(1):26-34 [PMID: 16529839]
  107. Vaccine. 2008 Apr 7;26(16):1972-81 [PMID: 18343539]
  108. Nat Commun. 2018 Dec 18;9(1):5360 [PMID: 30560935]
  109. J Virol. 1997 Oct;71(10):8066-72 [PMID: 9311906]
  110. N Biotechnol. 2015 Dec 25;32(6):651-7 [PMID: 25573765]
  111. Microb Cell Fact. 2021 Dec 20;20(1):227 [PMID: 34930257]
  112. Adv Drug Deliv Rev. 2010 Mar 18;62(4-5):378-93 [PMID: 19922750]
  113. Protein Sci. 2013 Mar;22(3):314-26 [PMID: 23281113]
  114. Biochim Biophys Acta Gen Subj. 2023 Mar;1867(3):130288 [PMID: 36470367]
  115. J Pharm Sci. 2018 Sep;107(9):2283-2296 [PMID: 29763607]
  116. Methods Mol Biol. 2024;2738:411-423 [PMID: 37966612]
  117. ACS Nano. 2018 Sep 25;12(9):8855-8866 [PMID: 30028591]
  118. Lancet. 2024 Mar 2;403(10429):813-823 [PMID: 38387470]
  119. Nat Med. 1999 Oct;5(10):1157-63 [PMID: 10502819]
  120. Virus Res. 2006 Dec;122(1-2):154-63 [PMID: 16938363]
  121. Vaccine. 2014 May 19;32(24):2859-65 [PMID: 24662711]
  122. Structure. 1996 May 15;4(5):543-54 [PMID: 8736553]
  123. Intervirology. 2001;44(2-3):98-114 [PMID: 11509871]
  124. Adv Immunol. 1981;31:1-136 [PMID: 6797272]
  125. Nature. 2013 Jul 4;499(7456):102-6 [PMID: 23698367]
  126. Nat Rev Immunol. 2010 Nov;10(11):787-96 [PMID: 20948547]
  127. ACS Appl Bio Mater. 2020 Jul 20;3(7):4380-4387 [PMID: 35025436]
  128. J Hepatol. 2008 Mar;48(3):494-503 [PMID: 18192058]
  129. J Immunol. 2020 Mar 1;204(5):1386-1394 [PMID: 31953355]
  130. Nat Protoc. 2013 Sep;8(9):1787-99 [PMID: 23989673]
  131. Adv Virus Res. 1998;50:141-82 [PMID: 9520999]
  132. Cell Rep. 2023 Mar 28;42(3):112266 [PMID: 36943870]
  133. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4942-6 [PMID: 8506338]
  134. Protein Eng Des Sel. 2004 May;17(5):455-62 [PMID: 15208403]
  135. Int J Biol Macromol. 2023 May 1;236:123979 [PMID: 36907305]
  136. Adv Appl Microbiol. 2023;125:1-48 [PMID: 38783722]
  137. J Control Release. 2017 Dec 10;267:47-56 [PMID: 28818619]
  138. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5914-5919 [PMID: 30850527]
  139. J Virol. 2002 Apr;76(8):4044-55 [PMID: 11907243]
  140. Biotechnol Bioprocess Eng. 2023;28(1):1-16 [PMID: 36627930]

Grants

  1. 32070928/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0vaccinesproteineffectivesubunithighlyantigendisplaycellsproductionmolecularengineeringreassemblyvirus-likeparticlesapproachesnanocarriernanovaccinesdevelopmentnecessitatesdelicatebalancemaximizingimmunogenicityminimizingsafetyconcernsSubunitgenerallyconsideredsafeoftenfailelicitrobustdurableimmuneresponsesNanotechnologypresentspromisingapproachaddressdilemmaenablingantigensmimiccriticalaspectsnativepathogensnanoscaledimensionsgeometryrepetitiveVariousexpressionsystemsincludingyeastbaculovirus/insectChinesehamsterovaryCHOexplorednanoparticleAmongstandsduecost-effectivenessscalabilityrapidcyclehighyieldsHowevermanufacturingplatformfaceschallengesrelatedunfavorableredoxenvironmentdisulfidebondformationlackpost-translationalmodificationsdifficultiesachievingproperfoldingreviewfocusesstrategiesenhancesolubilityfacilitatevitroVLPsalsodiscusssurfacesmethodsstabilizecarriersbioengineeringcombinationadvanceddesignholdsignificantpotentialdevelopingaffordable-derivedpavingwayimprovedprotectionwiderangeinfectiousdiseasesEngineering-DerivedNanoparticlesVaccineDevelopmentEcoli-derived

Similar Articles

Cited By