Nanoparticles as Delivery Systems for Antigenic Saccharides: From Conjugation Chemistry to Vaccine Design.

Marie-Jeanne Archambault, Laetitia Mwadi Tshibwabwa, Mélanie Côté-Cyr, Serge Moffet, Tze Chieh Shiao, Steve Bourgault
Author Information
  1. Marie-Jeanne Archambault: Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada. ORCID
  2. Laetitia Mwadi Tshibwabwa: Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada.
  3. Mélanie Côté-Cyr: Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada. ORCID
  4. Serge Moffet: Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada.
  5. Tze Chieh Shiao: Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada.
  6. Steve Bourgault: Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada. ORCID

Abstract

Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response by stimulating T-cell-dependent mechanisms. Nonetheless, the conjugation of purified polysaccharides to carrier proteins complexifies vaccine production, and immunization with protein glycoconjugates can lead to the undesirable immunogenic interference of the carrier. Recently, the use of nanoparticles and nanoassemblies for the delivery of antigenic saccharides has gathered attention from the scientific community. Nanoparticles can be easily functionalized with a diversity of functionalities, including T-cell epitope, immunomodulator and synthetic saccharides, allowing for the modulation and polarization of the glycoantigen-specific immune response. Notably, the conjugation of glycan to nanoparticles protects the antigens from degradation and enhances their uptake by immune cells. Different types of nanoparticles, such as liposomes assembled from lipids, inorganic nanoparticles, virus-like particles and dendrimers, have been explored for glycovaccine design. The versatility of nanoparticles and their ability to induce robust immune responses make them attractive delivery platforms for antigenic saccharides. The present review aims at summarizing recent advancements in the use of nano-scaled systems for the delivery of synthetic glycoantigens. After briefly presenting the immunological mechanisms required to promote a robust immune response against antigenic saccharides, this review will offer an overview of the current trends in the nanoparticle-based delivery of glycoantigens.

Keywords

References

Chem Soc Rev. 2013 Jun 7;42(11):4657-708 [PMID: 23400414]
FEBS J. 2022 Jul;289(14):4251-4303 [PMID: 33934527]
Hum Vaccin Immunother. 2013 Dec;9(12):2505-23 [PMID: 23955057]
Nanomedicine (Lond). 2012 May;7(5):651-62 [PMID: 22630149]
Methods. 1999 Sep;19(1):103-7 [PMID: 10525445]
Vaccine. 2009 Aug 27;27(39):5419-26 [PMID: 19559116]
Front Microbiol. 2018 Dec 21;9:3158 [PMID: 30622524]
Nat Nanotechnol. 2021 Apr;16(4):1-14 [PMID: 32807876]
FEMS Microbiol Rev. 2011 Nov;35(6):1126-57 [PMID: 21521247]
Rev Med Virol. 2024 Jan;34(1):e2498 [PMID: 38116958]
Vaccines (Basel). 2020 Dec 18;8(4): [PMID: 33353255]
Immunol Cell Biol. 2020 Apr;98(4):305-317 [PMID: 32142167]
ACS Cent Sci. 2016 Apr 27;2(4):210-8 [PMID: 27163051]
BMC Immunol. 2008 Dec 03;9:71 [PMID: 19055753]
Exp Parasitol. 2020 Sep;216:107944 [PMID: 32619431]
Org Biomol Chem. 2021 Mar 21;19(11):2448-2455 [PMID: 33645601]
Mol Pharm. 2021 Aug 2;18(8):2867-2888 [PMID: 34264684]
Chem Soc Rev. 2023 May 22;52(10):3353-3396 [PMID: 37070256]
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11519-11524 [PMID: 27671640]
Front Immunol. 2019 Jan 24;10:22 [PMID: 30733717]
Chem Rev. 2022 Oct 26;122(20):15603-15671 [PMID: 36174107]
Chem Sci. 2016 Mar 1;7(3):2294-2301 [PMID: 29910919]
Nano Today. 2019 Aug;27:73-98 [PMID: 32292488]
Front Cell Infect Microbiol. 2022 Jan 18;11:808005 [PMID: 35118012]
Biomaterials. 2022 Jan;280:121303 [PMID: 34871877]
Immunol Cell Biol. 2016 Nov;94(10):949-954 [PMID: 27502143]
J Biomed Sci. 2020 Jan 3;27(1):9 [PMID: 31900143]
Curr Protoc Protein Sci. 2012 Aug;Chapter 18:18.1.1-18.1.13 [PMID: 22851497]
Int J Biol Macromol. 2013 Sep;60:325-7 [PMID: 23791662]
Drug Discov Today Technol. 2020 Dec;38:57-67 [PMID: 34895641]
Glycoconj J. 2020 Oct;37(5):611-622 [PMID: 32535667]
Cancer Immunol Immunother. 2016 Mar;65(3):315-25 [PMID: 26847142]
ACS Macro Lett. 2022 Aug 16;11(8):975-981 [PMID: 35833848]
Methods Enzymol. 2010;478:463-84 [PMID: 20816494]
Front Immunol. 2021 May 13;12:674048 [PMID: 34054859]
Appl Microbiol Biotechnol. 2022 Jan;106(1):25-56 [PMID: 34889981]
Int J Microbiol. 2010;2010:148178 [PMID: 21490701]
Bioconjug Chem. 2008 Jul;19(7):1485-90 [PMID: 18597509]
Genes Immun. 2020 Aug;21(4):224-239 [PMID: 32753697]
ACS Chem Biol. 2013;8(6):1253-62 [PMID: 23505965]
Expert Opin Drug Discov. 2011 Oct;6(10):1045-66 [PMID: 22646863]
Chem Sci. 2019 Aug 16;10(34):7835-7851 [PMID: 31762967]
Nanomedicine (Lond). 2017 Jan;12(1):13-23 [PMID: 27879152]
J Am Chem Soc. 2013 Jun 26;135(25):9362-5 [PMID: 23763610]
Vaccine. 2006 Feb 6;24(6):716-29 [PMID: 16233938]
Ann Med. 2018 Mar;50(2):110-120 [PMID: 29172780]
Int J Pharm. 2021 May 15;601:120571 [PMID: 33812967]
Curr Opin Chem Eng. 2018 Mar;19:77-85 [PMID: 30568873]
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Sep;11(5):e1559 [PMID: 31172659]
Signal Transduct Target Ther. 2022 Feb 14;7(1):48 [PMID: 35165272]
Vaccines (Basel). 2023 Jan 19;11(2): [PMID: 36851097]
ACS Infect Dis. 2023 Jun 9;9(6):1232-1244 [PMID: 37200051]
Biotechnol Adv. 2023 Nov;68:108234 [PMID: 37558188]
J Org Chem. 2017 Dec 1;82(23):12085-12096 [PMID: 29112822]
J Clin Invest. 2017 Apr 3;127(4):1491-1504 [PMID: 28287405]
J Med Chem. 2018 Jun 14;61(11):4918-4927 [PMID: 29742893]
Immunol Lett. 2010 Jan 18;128(1):29-35 [PMID: 19895847]
ACS Chem Biol. 2019 Oct 18;14(10):2176-2184 [PMID: 31498587]
Bioconjug Chem. 2012 Aug 15;23(8):1513-23 [PMID: 22812418]
Expert Rev Vaccines. 2010 Oct;9(10):1149-76 [PMID: 20923267]
Expert Rev Vaccines. 2010 Mar;9(3):229-36 [PMID: 20218848]
Bioconjug Chem. 2008 Mar;19(3):751-8 [PMID: 18293897]
Bioengineering (Basel). 2022 Dec 06;9(12): [PMID: 36550980]
Bioconjug Chem. 2018 Mar 21;29(3):686-701 [PMID: 29287474]
mSphere. 2019 Sep 25;4(5): [PMID: 31554723]
Org Lett. 2017 Feb 3;19(3):456-459 [PMID: 28121454]
NPJ Vaccines. 2023 Aug 17;8(1):122 [PMID: 37591986]
Nat Rev Nephrol. 2019 Jun;15(6):346-366 [PMID: 30858582]
Front Immunol. 2024 Mar 01;15:1292588 [PMID: 38495885]
Angew Chem Int Ed Engl. 2005 Sep 19;44(37):5985-8 [PMID: 16108081]
J Pept Sci. 2021 Jul;27(7):e3323 [PMID: 33786923]
Expert Rev Vaccines. 2011 Apr;10(4):463-70 [PMID: 21506644]
Chemistry. 2020 Dec 4;26(68):15867-15870 [PMID: 32871016]
ACS Nano. 2013 May 28;7(5):3926-38 [PMID: 23631767]
Molecules. 2022 Aug 09;27(16): [PMID: 36014302]
Curr Opin Chem Biol. 2020 Oct;58:121-136 [PMID: 32920523]
Eur J Med Chem. 2023 Mar 5;249:115164 [PMID: 36758451]
Bioconjug Chem. 2015 Dec 16;26(12):2507-13 [PMID: 26549104]
J Exp Med. 1992 Jul 1;176(1):79-88 [PMID: 1377227]
Beilstein J Nanotechnol. 2020 Mar 19;11:480-493 [PMID: 32274287]
NPJ Vaccines. 2023 Oct 6;8(1):152 [PMID: 37803013]
Nat Rev Immunol. 2021 Feb;21(2):83-100 [PMID: 33353987]
J Nanobiotechnology. 2021 Feb 25;19(1):59 [PMID: 33632278]
Signal Transduct Target Ther. 2022 Apr 23;7(1):135 [PMID: 35461318]
J Org Chem. 2019 Nov 1;84(21):13232-13241 [PMID: 31565939]
Cancer Immunol Immunother. 2020 May;69(5):703-716 [PMID: 32034426]
Science. 2004 Jul 23;305(5683):522-5 [PMID: 15273395]
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):14-16 [PMID: 30578318]
HLA. 2016 Dec;88(6):275-286 [PMID: 27679419]
Nat Rev Immunol. 2020 Nov;20(11):651-668 [PMID: 32433532]
Front Chem. 2020 Nov 04;8:570185 [PMID: 33330359]
J R Soc Interface. 2013 Feb 20;10(82):20120939 [PMID: 23427093]
Cancer Res. 2004 Jul 15;64(14):4987-94 [PMID: 15256473]
Biotechnol Adv. 2023 Jul-Aug;65:108144 [PMID: 37028466]
Nanoscale. 2018 Nov 7;10(41):19547-19556 [PMID: 30324958]
Nat Chem Biol. 2007 Oct;3(10):663-7 [PMID: 17767155]
Vaccines (Basel). 2022 Mar 24;10(4): [PMID: 35455254]
Molecules. 2018 Jun 15;23(6): [PMID: 29914046]
Chem Sci. 2014 Apr;5(4):1437-1441 [PMID: 24683450]
Chem Rev. 2022 Oct 26;122(20):15672-15716 [PMID: 35608633]
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):261-6 [PMID: 22171012]
Future Microbiol. 2023 Apr;18:343-355 [PMID: 37166177]
ACS Chem Biol. 2012 Jan 20;7(1):235-40 [PMID: 22013921]
ACS Chem Biol. 2016 Apr 15;11(4):850-63 [PMID: 26895482]
Vaccine. 2024 Jan 12;42(2):229-238 [PMID: 38065772]
Methods. 2015 Nov 1;89:99-111 [PMID: 25937394]
ACS Chem Biol. 2015 Oct 16;10(10):2364-72 [PMID: 26262839]
Glycobiology. 2014 Jan;24(1):17-25 [PMID: 24056723]
NPJ Vaccines. 2019 May 1;4:16 [PMID: 31069118]
Nat Med. 2011 Nov 20;17(12):1602-9 [PMID: 22101769]
Biomed Pharmacother. 2020 Dec;132:110888 [PMID: 33113416]
Microbes Infect. 2002 Jul;4(8):837-51 [PMID: 12270731]
Drug Deliv Transl Res. 2021 Apr;11(2):353-372 [PMID: 33598818]
Vaccines (Basel). 2021 Sep 14;9(9): [PMID: 34579258]
ACS Catal. 2020 Feb 21;10(4):2791-2798 [PMID: 33414981]
Pharm Res. 2008 Oct;25(10):2216-30 [PMID: 18509602]
Front Immunol. 2020 Sep 30;11:583077 [PMID: 33101309]
J Immunol. 1986 Aug 15;137(4):1181-6 [PMID: 3016088]
Chemistry. 2008;14(16):4939-47 [PMID: 18431733]
Int J Cancer. 1989 Oct 15;44(4):691-6 [PMID: 2477336]
J Med Chem. 2021 Jan 14;64(1):233-278 [PMID: 33346636]
J Immunol. 2001 Feb 15;166(4):2849-54 [PMID: 11160353]
Nanomaterials (Basel). 2020 May 25;10(5): [PMID: 32466176]
J Immunol. 1978 Aug;121(2):566-72 [PMID: 79606]

Grants

  1. RGPIN-2018-06209/Natural Sciences and Engineering Research Council of Canada
  2. IT33124/Mitacs Accelerate grant

Word Cloud

Similar Articles

Cited By