Persistence of Microcystin in Three Agricultural Ponds in Georgia, USA.

Jaclyn E Smith, James A Widmer, Jennifer L Wolny, Laurel L Dunn, Matthew D Stocker, Robert L Hill, Oliva Pisani, Alisa W Coffin, Yakov Pachepsky
Author Information
  1. Jaclyn E Smith: Environmental Microbial Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA. ORCID
  2. James A Widmer: Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA. ORCID
  3. Jennifer L Wolny: Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA. ORCID
  4. Laurel L Dunn: Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA. ORCID
  5. Matthew D Stocker: Environmental Microbial Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA. ORCID
  6. Robert L Hill: Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
  7. Oliva Pisani: Southeast Watershed Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Tifton, GA 31793, USA.
  8. Alisa W Coffin: Southeast Watershed Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Tifton, GA 31793, USA.
  9. Yakov Pachepsky: Environmental Microbial Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA. ORCID

Abstract

Cyanobacteria and their toxins can have multiple effects on agricultural productivity and water bodies. Cyanotoxins can be transported to nearby crops and fields during irrigation and may pose a risk to animal health through water sources. Spatial and temporal variations in cyanotoxin concentrations have been reported for large freshwater sources such as lakes and reservoirs, but there are fewer studies on smaller agricultural surface water bodies. To determine whether spatiotemporal patterns of the cyanotoxin microcystin occurred in agricultural waters used for crop irrigation and livestock watering, three agricultural ponds on working farms in Georgia, USA, were sampled monthly within a fixed spatial grid over a 17-month period. Microcystin concentrations, which ranged between 0.04 and 743.75 ppb, were determined using microcystin-ADDA ELISA kits. Temporal stability was assessed using mean relative differences between microcystin concentrations at each location and averaged concentrations across ponds on each sampling date. There were locations or zones in all three ponds that were consistently higher or lower than the average daily microcystin concentrations throughout the year, with the highest microcystin concentrations occurring in winter. Additionally, microcystin patterns were strongly correlated with the patterns of chlorophyll, phycocyanin, and turbidity. The results of this work showed that consistent spatiotemporal patterns in cyanotoxins can occur in produce irrigation and livestock watering ponds, and this should be accounted for when developing agricultural water monitoring programs.

Keywords

References

  1. Toxicon X. 2018 Dec 10;1:100003 [PMID: 32831346]
  2. Sci Total Environ. 2017 Feb 1;579:893-901 [PMID: 27887824]
  3. Front Microbiol. 2015 Nov 17;6:1254 [PMID: 26635737]
  4. Toxins (Basel). 2016 Nov 03;8(11): [PMID: 27827872]
  5. Toxins (Basel). 2022 May 17;14(5): [PMID: 35622596]
  6. ScientificWorldJournal. 2013 Jun 16;2013:838176 [PMID: 23853542]
  7. mSystems. 2023 Oct 26;8(5):e0037923 [PMID: 37589463]
  8. Limnol Oceanogr. 2022 Jul;67(7):1470-1483 [PMID: 36248197]
  9. Toxins (Basel). 2024 Aug 14;16(8): [PMID: 39195767]
  10. Environ Toxicol Chem. 2016 Sep;35(9):2281-7 [PMID: 26844812]
  11. Toxins (Basel). 2024 Apr 19;16(4): [PMID: 38668621]
  12. Environ Pollut. 2020 Apr;259:113884 [PMID: 31918143]
  13. Appl Environ Microbiol. 2018 Jan 17;84(3): [PMID: 29150504]
  14. Toxins (Basel). 2015 Aug 18;7(8):3224-44 [PMID: 26295260]
  15. Harmful Algae. 2016 Sep;58:23-34 [PMID: 28073455]
  16. Environ Monit Assess. 2018 Mar 25;190(4):247 [PMID: 29574498]
  17. J Great Lakes Res. 2018 Oct;44(5):924-933 [PMID: 30983692]
  18. Mar Drugs. 2017 Jun 02;15(6): [PMID: 28574457]
  19. Int J Environ Res Public Health. 2014 May 14;11(5):5155-69 [PMID: 24830449]
  20. J Am Vet Med Assoc. 1989 Jun 15;194(12):1724-5 [PMID: 2502512]
  21. Res Vet Sci. 1994 Nov;57(3):310-6 [PMID: 7871250]
  22. Bioresour Technol. 2012 Feb;106:27-35 [PMID: 22206920]
  23. Adv Exp Med Biol. 2008;619:613-37 [PMID: 18461786]
  24. Sci Total Environ. 2017 Jan 1;575:294-308 [PMID: 27744157]
  25. Environ Toxicol. 2002 Feb;17(1):32-9 [PMID: 11847972]
  26. Environ Monit Assess. 2020 Oct 16;192(11):706 [PMID: 33064217]
  27. Water Res. 2015 Feb 1;69:131-142 [PMID: 25463934]
  28. ACS ES T Water. 2023 Nov 30;4(3):844-858 [PMID: 38482341]
  29. Environ Monit Assess. 2013 Aug;185(8):6379-95 [PMID: 23232847]
  30. Earth Interact. 2023 Jan 1;27(1):1-17 [PMID: 39233817]
  31. Harmful Algae. 2023 Aug;127:102466 [PMID: 37544667]
  32. Front Plant Sci. 2024 Mar 11;15:1370874 [PMID: 38529057]
  33. Sci Total Environ. 2020 Feb 10;703:134608 [PMID: 31757537]
  34. Environ Sci Pollut Res Int. 2023 Apr;30(17):49327-49338 [PMID: 36773259]
  35. Environ Int. 2016 May;91:276-82 [PMID: 26995270]
  36. J Am Vet Med Assoc. 1998 Dec 1;213(11):1605-7, 1571 [PMID: 9838962]
  37. Chemosphere. 2017 Apr;172:96-102 [PMID: 28064124]
  38. Environ Sci Technol. 2021 Jan 5;55(1):44-64 [PMID: 33334098]
  39. Environ Monit Assess. 2014 Jul;186(7):4443-59 [PMID: 24664523]
  40. Chemosphere. 2024 Sep;364:143248 [PMID: 39233291]
  41. Toxins (Basel). 2014 Dec 02;6(12):3238-57 [PMID: 25474494]
  42. Environ Toxicol. 2008 Apr;23(2):246-52 [PMID: 18214908]
  43. Sensors (Basel). 2021 Apr 11;21(8): [PMID: 33920437]
  44. Environ Sci Pollut Res Int. 2018 Mar;25(7):6300-6307 [PMID: 29247414]
  45. Microorganisms. 2021 Nov 01;9(11): [PMID: 34835404]
  46. Int J Environ Res Public Health. 2022 Oct 13;19(20): [PMID: 36293755]
  47. Toxins (Basel). 2015 May 12;7(5):1649-63 [PMID: 25985390]
  48. Environ Toxicol. 2005 Jun;20(3):270-6 [PMID: 15892068]
  49. Science. 2008 Apr 4;320(5872):57-8 [PMID: 18388279]
  50. Bull Environ Contam Toxicol. 2007 Apr;78(3-4):226-30 [PMID: 17487437]
  51. Ecotoxicol Environ Saf. 2015 Apr;114:318-25 [PMID: 25060409]
  52. ScientificWorldJournal. 2010 Sep 14;10:1795-809 [PMID: 20852822]
  53. Sci Rep. 2017 Aug 21;7(1):8342 [PMID: 28827675]
  54. J Vet Diagn Invest. 1993 Oct;5(4):651-3 [PMID: 8286478]

MeSH Term

Microcystins
Georgia
Ponds
Environmental Monitoring
Water Pollutants, Chemical
Agriculture
Seasons
Cyanobacteria

Chemicals

Microcystins
Water Pollutants, Chemical
microcystin

Word Cloud

Created with Highcharts 10.0.0pondsagriculturalconcentrationsmicrocystinwaterirrigationpatternscancyanotoxinlivestockbodiessourcesspatiotemporalwateringthreeGeorgiaUSAMicrocystinusingmonitoringCyanobacteriatoxinsmultipleeffectsproductivityCyanotoxinstransportednearbycropsfieldsmayposeriskanimalhealthSpatialtemporalvariationsreportedlargefreshwaterlakesreservoirsfewerstudiessmallersurfacedeterminewhetheroccurredwatersusedcropworkingfarmssampledmonthlywithinfixedspatialgrid17-monthperiodranged00474375ppbdeterminedmicrocystin-ADDAELISAkitsTemporalstabilityassessedmeanrelativedifferenceslocationaveragedacrosssamplingdatelocationszonesconsistentlyhigherloweraveragedailythroughoutyearhighestoccurringwinterAdditionallystronglycorrelatedchlorophyllphycocyaninturbidityresultsworkshowedconsistentcyanotoxinsoccurproduceaccounteddevelopingprogramsPersistenceThreeAgriculturalPondscyanobacteriaquality

Similar Articles

Cited By

No available data.