Interaction Between Nitric Oxide and Silicon on Leghaemoglobin and S-Nitrosothiol Levels in Soybean Nodules.

Da-Sol Lee, Ashim Kumar Das, Nusrat Jahan Methela, Byung-Wook Yun
Author Information
  1. Da-Sol Lee: Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea. ORCID
  2. Ashim Kumar Das: Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea. ORCID
  3. Nusrat Jahan Methela: Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea. ORCID
  4. Byung-Wook Yun: Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea. ORCID

Abstract

Nitrogen fixation in legume nodules is crucial for plant growth and development. Therefore, this study aims to investigate the effects of nitric oxide [S-nitrosoglutathione (GSNO)] and silicon [sodium metasilicate (Si)], both individually and in combination, on soybean growth, nodule formation, leghaemoglobin (Lb) synthesis, and potential post-translational modifications. At the V1 stage, soybean plants were treated for 2 weeks with 150 ��M GSNO, and Si at concentrations of 1 mM, 2 mM, and 4 mM. The results showed that NO and Si enhance the nodulation process by increasing phenylalanine ammonia-lyase activity and Nod factors (), attracting rhizobia and accelerating nodule formation. This leads to a greater number and larger diameter of nodules. Individually, NO and Si support the synthesis of Lb and leghaemoglobin protein () expression, ferric leghaemoglobin reductases (), and S-nitrosoglutathione reductase (). However, when used in combination, NO and Si inhibit these processes, leading to elevated levels of S-nitrosothiols in the roots and nodules. This combined inhibition may potentially induce post-translational modifications in , pivotal for the reduction of Lb to Lb. These findings underscore the critical role of NO and Si in the nodulation process and provide insight into their combined effects on this essential plant function.

Keywords

References

  1. Front Plant Sci. 2020 Jun 03;11:521 [PMID: 32582223]
  2. Sci Adv. 2023 Jan 13;9(2):eade1150 [PMID: 36638166]
  3. Antioxid Redox Signal. 2013 Jun 1;18(16):2202-19 [PMID: 23249379]
  4. Nature. 2011 Oct 13;478(7368):264-8 [PMID: 21964330]
  5. Nature. 2001 Mar 22;410(6827):490-4 [PMID: 11260719]
  6. Trends Plant Sci. 2023 Jun;28(6):623-625 [PMID: 36935265]
  7. Plant Physiol. 1991 May;96(1):32-7 [PMID: 16668174]
  8. Trends Plant Sci. 2001 Jan;6(1):24-30 [PMID: 11164374]
  9. New Phytol. 2012 Oct;196(2):548-560 [PMID: 22937888]
  10. New Phytol. 1992 Oct;122(2):211-237 [PMID: 33873995]
  11. Environ Sci Pollut Res Int. 2014;21(14):8792-800 [PMID: 24710726]
  12. Crit Rev Biotechnol. 2021 Sep;41(6):918-934 [PMID: 33784900]
  13. Plants (Basel). 2016 Aug 11;5(3): [PMID: 27529286]
  14. J Hazard Mater. 2021 Apr 15;408:124852 [PMID: 33383453]
  15. Plant Physiol. 1998 Jun;117(2):599-606 [PMID: 9625713]
  16. Plant Cell Rep. 2024 Jun 12;43(7):169 [PMID: 38864921]
  17. BMC Plant Biol. 2007 May 08;7:21 [PMID: 17488509]
  18. Ann Bot. 2020 Jun 19;126(1):61-72 [PMID: 32297921]
  19. Mol Plant Microbe Interact. 2004 Jan;17(1):62-9 [PMID: 14714869]
  20. Appl Environ Microbiol. 1982 Dec;44(6):1385-8 [PMID: 16346155]
  21. New Phytol. 2020 Oct;228(2):472-484 [PMID: 32442331]
  22. Science. 2021 Oct 29;374(6567):625-628 [PMID: 34709882]
  23. Biochim Biophys Acta. 1969;188(2):222-9 [PMID: 5387819]
  24. New Phytol. 2016 Jul;211(2):516-26 [PMID: 26916092]
  25. Int J Mol Sci. 2023 Jun 08;24(12): [PMID: 37373048]
  26. PLoS One. 2010 Jun 24;5(6):e11290 [PMID: 20585580]
  27. Plant Physiol. 1994 Sep;106(1):203-209 [PMID: 12232320]
  28. Mol Plant Microbe Interact. 2006 Apr;19(4):441-50 [PMID: 16610747]
  29. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7996-E8005 [PMID: 27864511]
  30. Arch Biochem Biophys. 1984 May 15;231(1):102-13 [PMID: 6539095]
  31. Curr Microbiol. 2023 May 19;80(7):219 [PMID: 37204538]
  32. Plant Physiol. 1984 Apr;74(4):984-8 [PMID: 16663546]
  33. J Plant Physiol. 2010 Feb 15;167(3):238-41 [PMID: 19733934]
  34. Plant Cell. 2023 Aug 2;35(8):2929-2951 [PMID: 37177994]
  35. Proc Natl Acad Sci U S A. 2005 May 31;102(22):8054-9 [PMID: 15911759]
  36. J Biol Chem. 2009 Jan 23;284(4):2131-7 [PMID: 19017644]
  37. Microbiology (Reading). 2005 Aug;151(Pt 8):2543-2550 [PMID: 16079333]
  38. BMC Plant Biol. 2023 Dec 11;23(1):639 [PMID: 38082263]
  39. Nature. 2003 Oct 09;425(6958):637-40 [PMID: 14534591]
  40. Plant Cell Physiol. 2019 Apr 1;60(4):816-825 [PMID: 30597068]
  41. Mol Plant Microbe Interact. 2006 Sep;19(9):970-5 [PMID: 16941901]
  42. Plant Sci. 2000 May 29;154(2):161-170 [PMID: 10729615]
  43. Front Plant Sci. 2024 Nov 06;15:1462149 [PMID: 39568457]
  44. Biochim Biophys Acta. 1979 Aug 28;579(2):314-24 [PMID: 575296]
  45. J Exp Bot. 2018 Jun 27;69(15):3703-3714 [PMID: 29701804]
  46. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:641-664 [PMID: 15012222]
  47. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13859-64 [PMID: 22859506]
  48. PLoS One. 2012;7(9):e45526 [PMID: 23029073]
  49. Plant Cell Physiol. 2005 Jan;46(1):99-107 [PMID: 15668209]
  50. J Exp Bot. 2015 May;66(10):2877-87 [PMID: 25732535]
  51. Nature. 2003 Oct 9;425(6958):585-92 [PMID: 14534578]

Grants

  1. 2021R1A6C101A416/National Research Facilities and Equipment Center

MeSH Term

Leghemoglobin
Glycine max
Silicon
Nitric Oxide
S-Nitrosothiols
Root Nodules, Plant
S-Nitrosoglutathione
Plant Proteins

Chemicals

Leghemoglobin
Silicon
Nitric Oxide
S-Nitrosothiols
S-Nitrosoglutathione
Plant Proteins

Word Cloud

Created with Highcharts 10.0.0SileghaemoglobinLbNOnodulessoybeannoduleformationmMplantgrowtheffectsnitricoxideGSNO]siliconcombinationsynthesispost-translationalmodificationsplants2nodulationprocessferricreductasescombinedNitrogenfixationlegumecrucialdevelopmentThereforestudyaimsinvestigate[S-nitrosoglutathione[sodiummetasilicateindividuallypotentialV1stagetreatedweeks150��Mconcentrations14resultsshowedenhanceincreasingphenylalanineammonia-lyaseactivityNodfactorsattractingrhizobiaacceleratingleadsgreaternumberlargerdiameterIndividuallysupportproteinexpressionS-nitrosoglutathionereductaseHoweverusedinhibitprocessesleadingelevatedlevelsS-nitrosothiolsrootsinhibitionmaypotentiallyinducepivotalreductionfindingsunderscorecriticalroleprovideinsightessentialfunctionInteractionNitricOxideSiliconLeghaemoglobinS-NitrosothiolLevelsSoybeanNodules

Similar Articles

Cited By