Synergistic Effects of Dietary Tryptophan and Dip Vaccination in the Immune Response of European Seabass Juveniles.

Diogo Peixoto, Inês Carvalho, André Cunha, Paulo Santos, Lourenço Ramos-Pinto, Marina Machado, Rita Azeredo, Benjamín Costas
Author Information
  1. Diogo Peixoto: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal. ORCID
  2. Inês Carvalho: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal. ORCID
  3. André Cunha: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal. ORCID
  4. Paulo Santos: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal. ORCID
  5. Lourenço Ramos-Pinto: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal.
  6. Marina Machado: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal. ORCID
  7. Rita Azeredo: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal. ORCID
  8. Benjamín Costas: CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal. ORCID

Abstract

Vaccination is an effective, cost-efficient method to preventing disease outbreaks. However, vaccine procedures can induce adverse reactions due to stress, increasing plasma cortisol in the short term. In this context, tryptophan may prove to be fundamental as it has been demonstrated to have various desirable neuroendocrine attributes in different fish species. Therefore, this study aimed to evaluate both short-term (3 days) and long-term (21 days) effects of dietary tryptophan supplementation on European seabass juveniles' (26.23 ± 7.22 g) response to vaccination and disease resistance to . The short-term tryptophan-fed fish exhibited increased hepatic superoxide dismutase and plasma cortisol levels, along with the downregulation of immune-related genes. Despite these changes, disease resistance was unaffected. When fish were later dip vaccinated, tryptophan prevented the stress-induced plasma cortisol increase and upregulated the gene expression of , suggesting tryptophan's role in enhancing vaccination efficiency by counteracting stress-associated effects. In the long term, the lowest supplementation dose counteracted vaccine-mediated reduced gene expression, and fish fed this diet showed a more modest molecular response. Overall, the findings suggest a complex interplay between tryptophan supplementation, immune responses, and vaccine efficiency in fish. Further research is necessary to clarify how tryptophan could consistently improve vaccine efficiency in aquaculture.

Keywords

References

  1. Fish Shellfish Immunol. 2014 Nov;41(1):70-9 [PMID: 24924098]
  2. Fish Shellfish Immunol. 2019 Jul;90:210-214 [PMID: 31039441]
  3. J Exp Biol. 2002 Dec;205(Pt 23):3679-87 [PMID: 12409494]
  4. Vet Immunol Immunopathol. 2013 Jan 15;151(1-2):113-23 [PMID: 23206403]
  5. Front Immunol. 2023 Jun 06;14:1209926 [PMID: 37346045]
  6. Nucleic Acids Res. 2016 Jul 8;44(W1):W147-53 [PMID: 27190236]
  7. J Fish Dis. 2016 Dec;39(12):1445-1455 [PMID: 27134184]
  8. Fish Physiol Biochem. 2010 Dec;36(4):1061-7 [PMID: 20148306]
  9. Environ Sci Pollut Res Int. 2022 Jan;29(4):6080-6092 [PMID: 34435289]
  10. Fish Physiol Biochem. 2014 Aug;40(4):1289-300 [PMID: 24599827]
  11. J Anim Sci. 2004 Apr;82(4):1091-9 [PMID: 15080331]
  12. Anal Biochem. 1969 Mar;27(3):502-22 [PMID: 4388022]
  13. Int J Mol Sci. 2022 Oct 18;23(20): [PMID: 36293344]
  14. Front Physiol. 2019 Jun 18;10:717 [PMID: 31275156]
  15. Food Chem. 2016 May 15;199:210-9 [PMID: 26775963]
  16. Amino Acids. 2011 Nov;41(5):1195-205 [PMID: 20872026]
  17. Fish Shellfish Immunol. 2015 Oct;46(2):168-80 [PMID: 26057461]
  18. Front Immunol. 2023 Sep 04;14:1254677 [PMID: 37731496]
  19. Fish Shellfish Immunol Rep. 2021 May 12;2:100010 [PMID: 36420509]
  20. Comp Biochem Physiol B Biochem Mol Biol. 2016 Sep;199:136-145 [PMID: 27445122]
  21. Vet Immunol Immunopathol. 1995 Apr;45(3-4):333-45 [PMID: 7676614]
  22. J Exp Biol. 2003 Oct;206(Pt 20):3589-99 [PMID: 12966050]
  23. Ecotoxicology. 2010 Nov;19(8):1369-81 [PMID: 20686920]
  24. Curr Drug Metab. 2007 Apr;8(3):237-44 [PMID: 17430112]
  25. Front Physiol. 2019 May 01;10:508 [PMID: 31118899]
  26. Fish Shellfish Immunol. 2015 Feb;42(2):353-62 [PMID: 25463296]
  27. Fish Shellfish Immunol. 2012 Jul;33(1):60-6 [PMID: 22538351]
  28. Breast Cancer Res. 2017 Mar 24;19(1):35 [PMID: 28340615]
  29. Sci Rep. 2019 May 22;9(1):7689 [PMID: 31118462]
  30. Fish Shellfish Immunol. 2004 May;16(5):561-9 [PMID: 15110330]
  31. Microorganisms. 2019 Nov 29;7(12): [PMID: 31795391]
  32. Eur J Immunol. 2013 May;43(5):1297-308 [PMID: 23436183]
  33. Dev Comp Immunol. 2011 Dec;35(12):1256-62 [PMID: 21414351]
  34. J Nutr. 2002 Apr;132(4):748-55 [PMID: 11925472]
  35. Br J Nutr. 2013 Jan 28;109(2):273-82 [PMID: 22571601]
  36. J Cell Biochem. 2017 Apr;118(4):718-725 [PMID: 27564718]
  37. Front Endocrinol (Lausanne). 2019 Jul 10;10:447 [PMID: 31354625]
  38. Free Radic Biol Med. 2014 Aug;73:337-48 [PMID: 24873722]
  39. Biology (Basel). 2022 May 17;11(5): [PMID: 35625492]
  40. Fish Shellfish Immunol. 2019 Aug;91:12-18 [PMID: 31082518]
  41. Front Immunol. 2017 Sep 27;8:1226 [PMID: 29021795]
  42. Adv Nutr. 2010 Nov;1(1):31-7 [PMID: 22043449]
  43. Front Immunol. 2021 Feb 16;11:622377 [PMID: 33664735]
  44. Chemosphere. 2007 Jan;66(7):1230-42 [PMID: 16959297]
  45. Fish Shellfish Immunol. 2012 Sep;33(3):543-51 [PMID: 22728565]
  46. Amino Acids. 2009 May;37(1):43-53 [PMID: 18751871]
  47. Fish Shellfish Immunol. 2024 Sep;152:109733 [PMID: 38944251]
  48. Sci Rep. 2018 Nov 26;8(1):17352 [PMID: 30478379]
  49. Sci Rep. 2024 Mar 28;14(1):7354 [PMID: 38548769]
  50. Fish Shellfish Immunol. 2004 Oct;17(4):375-87 [PMID: 15312664]

MeSH Term

Animals
Tryptophan
Bass
Dietary Supplements
Vaccination
Hydrocortisone
Fish Diseases
Disease Resistance

Chemicals

Tryptophan
Hydrocortisone

Word Cloud

Created with Highcharts 10.0.0tryptophanfishdiseasevaccineplasmacortisoleffectssupplementationresponsevaccinationefficiencyVaccinationtermshort-termdaysEuropeanresistancegeneexpressioneffectivecost-efficientmethodpreventingoutbreaksHoweverprocedurescaninduceadversereactionsduestressincreasingshortcontextmayprovefundamentaldemonstratedvariousdesirableneuroendocrineattributesdifferentspeciesThereforestudyaimedevaluate3long-term21dietaryseabassjuveniles'2623±722gtryptophan-fedexhibitedincreasedhepaticsuperoxidedismutaselevelsalongdownregulationimmune-relatedgenesDespitechangesunaffectedlaterdipvaccinatedpreventedstress-inducedincreaseupregulatedsuggestingtryptophan'sroleenhancingcounteractingstress-associatedlonglowestdosecounteractedvaccine-mediatedreducedfeddietshowedmodestmolecularOverallfindingssuggestcomplexinterplayimmuneresponsesresearchnecessaryclarifyconsistentlyimproveaquacultureSynergisticEffectsDietaryTryptophanDipImmuneResponseSeabassJuvenilesphysiologyinflammatorynutritionalimmunologysynergistic

Similar Articles

Cited By