Therapeutic Potential of Silver Nanoparticles (AgNPs) as an Antimycobacterial Agent: A Comprehensive Review.

Nilakshi Barua, Alak Kumar Buragohain
Author Information
  1. Nilakshi Barua: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India. ORCID
  2. Alak Kumar Buragohain: Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India.

Abstract

The uncontrolled emergence of multidrug-resistant mycobacterial strains presents as the primary determinant of the present crisis in antimycobacterial therapeutics and underscores tuberculosis (TB) as a daunting global health concern. There is an urgent requirement for drug development for the treatment of TB. Numerous novel molecules are presently undergoing clinical investigation as part of TB drug development. However, the complex cell wall and the lifecycle of within the host pose a significant challenge to the development of new drugs and, therefore, led to a shift in research focus towards alternative antibacterial compounds, notably nanotechnology. A novel approach to TB therapy utilizing silver nanoparticles (AgNPs) holds the potential to address the medical limitations imposed by drug resistance commonly associated with currently available antibiotics. Their broad-spectrum antimicrobial activity presents the utilization of AgNPs as a promising avenue for the development of therapeutics targeting mycobacterial-induced diseases, which can effectively target , including drug-resistant strains. AgNPs can enhance the effectiveness of traditional antibiotics, potentially leading to better treatment outcomes and a shorter duration of therapy. However, the successful implementation of this complementary strategy is contingent upon addressing several pivotal therapeutic challenges, including suboptimal delivery, variability in intra-macrophagic antimycobacterial effect, and potential toxicity. Future perspectives may involve developing targeted delivery systems that maximize therapeutic effects and minimize side effects, as well as exploring combinations with existing TB medications to enhance treatment outcomes. We have attempted to provide a comprehensive overview of the antimycobacterial activity of AgNPs, and critically analyze the advantages and limitations of employing silver nanoparticles in the treatment of TB.

Keywords

References

  1. Molecules. 2023 Jan 07;28(2): [PMID: 36677695]
  2. Biomater Sci. 2014 Feb 23;2(2):192-202 [PMID: 32481879]
  3. Int J Mol Sci. 2023 Sep 16;24(18): [PMID: 37762471]
  4. Enzyme Microb Technol. 2016 Dec;95:28-44 [PMID: 27866624]
  5. J Pharm Sci. 2019 Jan;108(1):58-72 [PMID: 30385282]
  6. J Parasit Dis. 2019 Dec;43(4):658-671 [PMID: 31749538]
  7. Apoptosis. 2020 Feb;25(1-2):120-134 [PMID: 31863325]
  8. Antibiotics (Basel). 2022 Jun 14;11(6): [PMID: 35740206]
  9. J Bacteriol. 1997 Oct;179(19):6127-32 [PMID: 9324262]
  10. Cell Biol Toxicol. 2018 Jun;34(3):167-176 [PMID: 28721573]
  11. Microorganisms. 2023 Feb 01;11(2): [PMID: 36838334]
  12. Curr Microbiol. 2011 Mar;62(3):715-26 [PMID: 20936471]
  13. Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0062822 [PMID: 36094196]
  14. Pharm Biol. 2017 Dec;55(1):1536-1544 [PMID: 28385088]
  15. Neurotoxicology. 2016 Dec;57:45-53 [PMID: 27593553]
  16. Vet Pathol. 2012 May;49(3):423-39 [PMID: 22262351]
  17. Colloids Surf B Biointerfaces. 2020 Jan 1;185:110627 [PMID: 31732391]
  18. Biometals. 2014 Aug;27(4):695-702 [PMID: 24989695]
  19. Anal Bioanal Chem. 2010 Sep;398(2):689-700 [PMID: 20577719]
  20. Front Pharmacol. 2021 Nov 17;12:746496 [PMID: 34899300]
  21. Small. 2009 Jul;5(13):1553-61 [PMID: 19326357]
  22. ACS Nano. 2009 Feb 24;3(2):279-90 [PMID: 19236062]
  23. Int J Nanomedicine. 2012;7:1805-18 [PMID: 22619529]
  24. Braz J Microbiol. 2019 Jul;50(3):791-805 [PMID: 31250405]
  25. Dokl Biol Sci. 2013 Sep;452:325-8 [PMID: 24150658]
  26. Nanoscale Adv. 2020 Jan 15;2(2):648-658 [PMID: 36133225]
  27. J Nanobiotechnology. 2024 Mar 17;22(1):118 [PMID: 38494495]
  28. Int J Antimicrob Agents. 2015 Aug;46(2):183-8 [PMID: 26009020]
  29. Adv Healthc Mater. 2018 Jul;7(13):e1701503 [PMID: 29808627]
  30. Int J Nanomedicine. 2016 May 04;11:1889-97 [PMID: 27217751]
  31. ACS Nano. 2018 Aug 28;12(8):8646-8661 [PMID: 30081622]
  32. J Biomater Sci Polym Ed. 2017 Nov;28(16):1847-1858 [PMID: 28697688]
  33. Rev Sci Tech. 2018 Dec;37(3):823-830 [PMID: 30964466]
  34. Molecules. 2021 Jul 01;26(13): [PMID: 34279383]
  35. ACS Nano. 2018 Jun 26;12(6):5228-5240 [PMID: 29767993]
  36. Environ Sci Pollut Res Int. 2018 Apr;25(11):10418-10433 [PMID: 28762049]
  37. J Biol Inorg Chem. 2021 Oct;26(7):817-831 [PMID: 34476609]
  38. Drug Resist Updat. 2016 Jul;27:14-29 [PMID: 27449595]
  39. Front Immunol. 2013 Jan 07;3:411 [PMID: 23308075]
  40. Indian J Microbiol. 2023 Mar;63(1):73-83 [PMID: 37188239]
  41. Curr Pharm Des. 2019;25(24):2650-2660 [PMID: 31298154]
  42. Pathogens. 2023 Jul 28;12(8): [PMID: 37623950]
  43. J Immunotoxicol. 2019 Dec;16(1):63-73 [PMID: 31282784]
  44. Int J Biol Macromol. 2019 Jun 1;130:727-736 [PMID: 30771392]
  45. Int J Biol Macromol. 2020 Jan 1;142:244-253 [PMID: 31690471]
  46. Sci Rep. 2022 Nov 19;12(1):19934 [PMID: 36402913]
  47. Toxicol Mech Methods. 2018 Jul;28(6):432-439 [PMID: 29606030]
  48. Biomaterials. 2013 Nov;34(33):8333-43 [PMID: 23886731]
  49. Front Plant Sci. 2015 Mar 18;6:129 [PMID: 25852702]
  50. Microb Pathog. 2017 Sep;110:335-344 [PMID: 28710015]
  51. PLoS One. 2015 Nov 18;10(11):e0143077 [PMID: 26580078]
  52. Tuberc Res Treat. 2017;2017:4920209 [PMID: 28210505]
  53. Int J Mol Sci. 2020 Dec 22;22(1): [PMID: 33374948]
  54. Microbiol Spectr. 2023 Feb 14;11(1):e0285722 [PMID: 36625664]
  55. Nat Med. 1999 Feb;5(2):183-8 [PMID: 9930866]
  56. Pharmaceutics. 2022 Mar 12;14(3): [PMID: 35336005]
  57. Heliyon. 2024 May 10;10(10):e31116 [PMID: 38799742]
  58. ACS Omega. 2020 Apr 01;5(14):7861-7876 [PMID: 32309695]
  59. Antimicrob Agents Chemother. 2013 Aug;57(8):3688-98 [PMID: 23689720]
  60. Front Microbiol. 2024 Jul 31;15:1440065 [PMID: 39149204]
  61. Chem Biol Drug Des. 2012 Apr;79(4):553-9 [PMID: 22151277]
  62. Nanoscale. 2015 Oct 14;7(38):16100-9 [PMID: 26372376]
  63. Nat Nanotechnol. 2021 Sep;16(9):996-1003 [PMID: 34155383]
  64. Int J Mycobacteriol. 2016 Jun;5(2):197-204 [PMID: 27242232]
  65. J Biomed Nanotechnol. 2014 Nov;10(11):3304-17 [PMID: 26000389]
  66. Carbohydr Polym. 2019 Dec 1;225:115228 [PMID: 31521288]
  67. Colloids Surf B Biointerfaces. 2021 Jan;197:111405 [PMID: 33130523]
  68. Toxicol Lett. 2017 Jul 5;276:11-20 [PMID: 28483428]
  69. Infect Drug Resist. 2019 Nov 04;12:3425-3435 [PMID: 31807033]
  70. Mar Drugs. 2019 Apr 03;17(4): [PMID: 30987163]
  71. Molecules. 2023 Sep 18;28(18): [PMID: 37764463]
  72. J Genet Eng Biotechnol. 2021 May 17;19(1):74 [PMID: 33999298]
  73. Microb Pathog. 2018 Apr;117:68-72 [PMID: 29427709]
  74. Vestn Otorinolaringol. 2017;82(3):54-57 [PMID: 28631683]
  75. Int J Nanomedicine. 2020 Mar 24;15:2011-2026 [PMID: 32273699]
  76. Mater Sci Eng C Mater Biol Appl. 2018 Aug 1;89:429-443 [PMID: 29752116]
  77. Curr Protein Pept Sci. 2022;23(12):823-836 [PMID: 36200246]

Word Cloud

Created with Highcharts 10.0.0TBAgNPsantimycobacterialdevelopmenttreatmentnanoparticlestuberculosisdrugnovelsilverstrainspresentstherapeuticsHowevertherapypotentiallimitationsantibioticsactivitycanincludingenhanceoutcomestherapeuticdeliveryeffectsuncontrolledemergencemultidrug-resistantmycobacterialprimarydeterminantpresentcrisisunderscoresdauntingglobalhealthconcernurgentrequirementNumerousmoleculespresentlyundergoingclinicalinvestigationpartcomplexcellwalllifecyclewithinhostposesignificantchallengenewdrugsthereforeledshiftresearchfocustowardsalternativeantibacterialcompoundsnotablynanotechnologyapproachutilizingholdsaddressmedicalimposedresistancecommonlyassociatedcurrentlyavailablebroad-spectrumantimicrobialutilizationpromisingavenuetargetingmycobacterial-induceddiseaseseffectivelytargetdrug-resistanteffectivenesstraditionalpotentiallyleadingbettershorterdurationsuccessfulimplementationcomplementarystrategycontingentuponaddressingseveralpivotalchallengessuboptimalvariabilityintra-macrophagiceffecttoxicityFutureperspectivesmayinvolvedevelopingtargetedsystemsmaximizeminimizesidewellexploringcombinationsexistingmedicationsattemptedprovidecomprehensiveoverviewcriticallyanalyzeadvantagesemployingTherapeuticPotentialSilverNanoparticlesAntimycobacterialAgent:ComprehensiveReviewMycobacteriumTB-therapy

Similar Articles

Cited By