Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence.

Geoffrey Deneubourg, Lionel Schiavolin, Dalila Lakhloufi, Gwenaelle Botquin, Valérie Delforge, Mark R Davies, Pierre R Smeesters, Anne Botteaux
Author Information
  1. Geoffrey Deneubourg: Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium.
  2. Lionel Schiavolin: Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium. ORCID
  3. Dalila Lakhloufi: Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium.
  4. Gwenaelle Botquin: Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium.
  5. Valérie Delforge: Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium.
  6. Mark R Davies: Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia. ORCID
  7. Pierre R Smeesters: Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium.
  8. Anne Botteaux: Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium. ORCID

Abstract

, or Group A (GAS), is responsible for over 500,000 deaths per year. Approximately 15% of these deaths are caused by necrotizing soft-tissue infections. In 2008, we isolated an M5 GAS, named the LO1 strain, responsible for the nosocomial transmission of necrotizing fasciitis between a baby and a nurse in Belgium. To understand this unusual transmission route, the LO1 strain was sequenced. A comparison of the LO1 genome and transcriptome with the reference M5 Manfredo strain was conducted. We found that the major differences were the presence of an additional DNase and a Tn916-like transposon in the LO1 and other invasive M5 genomes. RNA-seq analysis showed that genes present on the transposon were barely expressed. In contrast, the DNases presented different expression profiles depending on the tested conditions. We generated knock-out mutants in the LO1 background and characterized their virulence phenotype. We also determined their nuclease activity on different substrates. We found that DNases are dispensable for biofilm formation and adhesion to both keratinocytes and pharyngeal cells. Three of these were found to be essential for blood survival; Spd4 and Sdn are implicated in phagocytosis resistance, and Spd1 is responsible for neutrophil extracellular trap (NET) degradation.

Keywords

References

  1. J Invest Dermatol. 2019 Jun;139(6):1284-1293 [PMID: 30543898]
  2. Lancet. 2010 Mar 20;375(9719):1052 [PMID: 20304249]
  3. Virulence. 2017 Oct 3;8(7):1390-1400 [PMID: 28459299]
  4. Curr Protoc Microbiol. 2013 Oct 02;30:9D.2.1-9D.2.13 [PMID: 24510893]
  5. Bioinformatics. 2018 Mar 15;34(6):1037-1039 [PMID: 29106469]
  6. Microbiol Spectr. 2024 Oct 3;12(10):e0118524 [PMID: 39162539]
  7. Genome Res. 2003 Jun;13(6A):1042-55 [PMID: 12799345]
  8. J Immunol. 2021 Aug 15;207(4):1138-1149 [PMID: 34341168]
  9. Wellcome Open Res. 2018 Sep 24;3:124 [PMID: 30345391]
  10. J Biomed Sci. 2009 Jan 15;16:6 [PMID: 19272175]
  11. J Hosp Infect. 2020 May;105(1):70-77 [PMID: 32386676]
  12. Trends Microbiol. 2010 Jun;18(6):275-82 [PMID: 20347595]
  13. Nat Genet. 2015 Jan;47(1):84-7 [PMID: 25401300]
  14. Nat Rev Microbiol. 2023 Jul;21(7):431-447 [PMID: 36894668]
  15. J Clin Microbiol. 2006 Aug;44(8):2721-7 [PMID: 16891483]
  16. Public Health. 2020 Sep;186:63-70 [PMID: 32784097]
  17. mBio. 2014 Apr 01;5(2):e01006-14 [PMID: 24692634]
  18. PLoS Pathog. 2011 Oct;7(10):e1002361 [PMID: 22046138]
  19. Nat Med. 2007 Aug;13(8):981-5 [PMID: 17632528]
  20. Front Cell Dev Biol. 2021 Jan 11;8:624958 [PMID: 33505976]
  21. PLoS Pathog. 2006 Jan;2(1):e5 [PMID: 16446783]
  22. Microb Genom. 2016 Jun 24;2(6):e000059 [PMID: 28348855]
  23. Lancet Microbe. 2024 Feb;5(2):e181-e193 [PMID: 38070538]
  24. Methods Mol Biol. 2020;2136:317-322 [PMID: 32430833]
  25. PLoS One. 2010 Jun 25;5(6):e11147 [PMID: 20593022]
  26. BMC Microbiol. 2011 Dec 14;11:262 [PMID: 22168784]
  27. Curr Biol. 2006 Feb 21;16(4):396-400 [PMID: 16488874]
  28. J Bacteriol. 2010 Jul;192(14):3735-46 [PMID: 20494994]
  29. Nucleic Acids Res. 2007 Jan;35(Database issue):D347-53 [PMID: 17145713]
  30. J Immunol. 2002 Sep 1;169(5):2561-9 [PMID: 12193726]
  31. Microbiology (Reading). 2016 Aug;162(8):1346-1359 [PMID: 27329479]
  32. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5039-44 [PMID: 21383167]
  33. Trends Microbiol. 2009 Jun;17(6):251-8 [PMID: 19464182]
  34. Curr Opin Infect Dis. 2016 Jun;29(3):295-303 [PMID: 26895573]
  35. Pathogens. 2021 Jun 21;10(6): [PMID: 34205500]
  36. Sci Rep. 2021 Apr 15;11(1):8200 [PMID: 33859234]
  37. PLoS Pathog. 2012;8(6):e1002736 [PMID: 22719247]
  38. Mol Microbiol. 2005 Sep;57(6):1545-56 [PMID: 16135223]
  39. Nat Genet. 2019 Jun;51(6):1035-1043 [PMID: 31133745]
  40. JCI Insight. 2016 Jul 7;1(10):e87882 [PMID: 27699220]
  41. Lancet Infect Dis. 2019 Nov;19(11):1209-1218 [PMID: 31519541]
  42. Mol Microbiol. 2010 Feb;75(3):731-43 [PMID: 20025665]
  43. Microbiology (Reading). 2018 Mar;164(3):242-250 [PMID: 29458565]
  44. RNA Biol. 2010 Sep-Oct;7(5):569-72 [PMID: 21037420]
  45. Appl Environ Microbiol. 2006 Apr;72(4):2864-75 [PMID: 16597993]
  46. Trends Microbiol. 2002 Nov;10(11):515-21 [PMID: 12419616]
  47. Mol Microbiol. 2011 Mar;79(6):1629-42 [PMID: 21231972]
  48. Microb Pathog. 2011 Jul-Aug;51(1-2):58-68 [PMID: 21443942]
  49. BMC Microbiol. 2016 Oct 3;16(1):230 [PMID: 27716055]
  50. Infect Immun. 2002 Jun;70(6):2805-11 [PMID: 12010966]
  51. Nat Commun. 2019 Oct 24;10(1):4852 [PMID: 31649284]
  52. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  53. Infect Immun. 2001 Mar;69(3):1440-3 [PMID: 11179310]
  54. J Clin Microbiol. 2005 Aug;43(8):4083-91 [PMID: 16081955]
  55. Infect Immun. 2015 Mar;83(3):1122-9 [PMID: 25561712]
  56. Methods Mol Biol. 2020;2136:59-69 [PMID: 32430813]
  57. Foods. 2018 Mar 19;7(3): [PMID: 29562719]
  58. PLoS One. 2015 Dec 23;10(12):e0145884 [PMID: 26701803]
  59. Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1679-84 [PMID: 15668390]
  60. J Bacteriol. 2007 Feb;189(4):1473-7 [PMID: 17012393]
  61. Nucleic Acids Res. 2024 Jan 5;52(D1):D368-D375 [PMID: 37933859]
  62. Nat Commun. 2020 Oct 6;11(1):5018 [PMID: 33024089]
  63. Vaccine. 2008 Oct 29;26(46):5835-42 [PMID: 18789365]
  64. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  65. BMC Genomics. 2011 Aug 08;12:402 [PMID: 21824423]
  66. Clin Microbiol Rev. 2014 Apr;27(2):264-301 [PMID: 24696436]
  67. PLoS One. 2018 Jun 21;13(6):e0199163 [PMID: 29927994]
  68. PLoS One. 2009;4(1):e4166 [PMID: 19132104]
  69. PLoS Pathog. 2008 Feb 8;4(2):e37 [PMID: 18282099]
  70. Curr Probl Surg. 2014 Aug;51(8):344-62 [PMID: 25069713]
  71. Nucleic Acids Res. 2016 May 5;44(8):3946-57 [PMID: 26969731]
  72. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13855-60 [PMID: 12370433]
  73. PLoS Comput Biol. 2020 Dec 4;16(12):e1008439 [PMID: 33275607]
  74. Front Cell Infect Microbiol. 2015 Feb 11;5:15 [PMID: 25717441]
  75. mSphere. 2023 Feb 21;8(1):e0046922 [PMID: 36507654]
  76. Microbiol Resour Announc. 2021 Apr 15;10(15): [PMID: 33858921]
  77. Nat Commun. 2023 Feb 24;14(1):1051 [PMID: 36828918]
  78. Crit Rev Microbiol. 2024 Mar;50(2):241-265 [PMID: 38140809]
  79. J Antimicrob Chemother. 2005 Apr;55(4):445-51 [PMID: 15772148]
  80. Lancet Infect Dis. 2005 Nov;5(11):685-94 [PMID: 16253886]
  81. Infect Immun. 2003 Dec;71(12):7079-86 [PMID: 14638798]
  82. Curr Protoc Microbiol. 2013 Oct 02;30:9D.3.1-9D.3.29 [PMID: 24510894]
  83. Nucleic Acids Res. 2012 Jan;40(2):928-38 [PMID: 21948797]

Grants

  1. CDR J.0018.20/Fund for Scientific Research
  2. PDR T.0227.20/Fund for Scientific Research

Word Cloud

Created with Highcharts 10.0.0LO1DNasesresponsiblenecrotizingM5strainfoundGroupGASdeathstransmissionfasciitistransposondifferentvirulence500000peryearApproximately15%causedsoft-tissueinfections2008isolatednamednosocomialbabynurseBelgiumunderstandunusualroutesequencedcomparisongenometranscriptomereferenceManfredoconductedmajordifferencespresenceadditionalDNaseTn916-likeinvasivegenomesRNA-seqanalysisshowedgenespresentbarelyexpressedcontrastpresentedexpressionprofilesdependingtestedconditionsgeneratedknock-outmutantsbackgroundcharacterizedphenotypealsodeterminednucleaseactivitysubstratesdispensablebiofilmformationadhesionkeratinocytespharyngealcellsThreeessentialbloodsurvivalSpd4SdnimplicatedphagocytosisresistanceSpd1neutrophilextracellulartrapNETdegradationNosocomialTransmissionNecrotizingFasciitis:MolecularCharacterizationStreptococcalClinicalVirulenceStreptococcuspyogenesbacterialhost–pathogeninteractions

Similar Articles

Cited By