Development of Technology for the Synthesis of Nanocrystalline Cerium Oxide Under Production Conditions with the Best Regenerative Activity and Biocompatibility for Further Creation of Wound-Healing Agents.

Ekaterina V Silina, Victor A Stupin, Natalia E Manturova, Elena L Chuvilina, Akhmedali A Gasanov, Anna A Ostrovskaya, Olga I Andreeva, Natalia Y Tabachkova, Maxim A Abakumov, Aleksey A Nikitin, Alexey A Kryukov, Svetlana A Dodonova, Aleksey V Kochura, Maksim A Pugachevskii
Author Information
  1. Ekaterina V Silina: I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia. ORCID
  2. Victor A Stupin: Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
  3. Natalia E Manturova: Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
  4. Elena L Chuvilina: "LANHIT" LLC, 105118 Moscow, Russia.
  5. Akhmedali A Gasanov: "LANHIT" LLC, 105118 Moscow, Russia.
  6. Anna A Ostrovskaya: "LANHIT" LLC, 105118 Moscow, Russia.
  7. Olga I Andreeva: "LANHIT" LLC, 105118 Moscow, Russia.
  8. Natalia Y Tabachkova: National University of Science & Technology MISIS, 119049 Moscow, Russia. ORCID
  9. Maxim A Abakumov: National University of Science & Technology MISIS, 119049 Moscow, Russia. ORCID
  10. Aleksey A Nikitin: National University of Science & Technology MISIS, 119049 Moscow, Russia. ORCID
  11. Alexey A Kryukov: Kursk State Medical University, Karl Marx Str., 3, 305041 Kursk, Russia. ORCID
  12. Svetlana A Dodonova: Kursk State Medical University, Karl Marx Str., 3, 305041 Kursk, Russia. ORCID
  13. Aleksey V Kochura: Southwest State University, 50 let Oktyabrya Str., 94, 305040 Kursk, Russia. ORCID
  14. Maksim A Pugachevskii: Southwest State University, 50 let Oktyabrya Str., 94, 305040 Kursk, Russia. ORCID

Abstract

The issue of effective wound healing remains highly relevant. The objective of the study is to develop an optimal method for the synthesis of nanosized cerium oxide powder obtained via the thermal decomposition of cerium carbonate precipitated from aqueous nitrate solution for the technical creation of new drugs in production conditions; the select modification of synthesis under different conditions based on the evaluation of the physicochemical characteristics of the obtained material and its biological activity, and an evaluation of the broad-spectrum effect on cells involved in the regeneration of skin structure as well as antimicrobial properties. Several modes of the industrial synthesis of cerium dioxide nanoparticles (NPs) were carried out. The synthesis stages and the chemical and physical parameters of the obtained NPs were described using transmission electron microscopy (TEM), X-ray diffraction, Raman spectroscopy, and mass spectrometry. The cell cultures of human fibroblasts and keratinocytes were cultured with different concentrations of different nanoceria variations, and the cytotoxicity and the metabolic and proliferative activity were investigated. An MTT test and cell counting were performed. The antimicrobial activity of CeO variations at a concentration of 0.1-0.0001 M against was studied. The purity of the synthesized nanoceria powders in all the batches was >99.99%. According to TEM data, the size of the NPs varied from 1 nm to 70 nm under different conditions and methodologies. The most optimal technology for the synthesis of the nanoceria with the maximum biological effect was selected. A method for obtaining the most bioactive NPs of optimal size (up to 10 nm) was proposed. The repeatability of the results of the proposed method of nanoceria synthesis in terms of particle size was confirmed. It was proven that the more structural defects on the surface of the CeO crystal lattice, the higher the efficiency of the NPs due to oxygen vacancies. The strain provided the best redox activity and antioxidant properties of the nanoceria, which was demonstrated by better regenerative potential on various cell lines. The beneficial effect of synthesized nanoceria on the proliferative and metabolic activity of the cell lines involved in skin regeneration (human fibroblasts, human keratinocytes) was demonstrated. The antimicrobial effect of synthesized nanoceria on the culture of the most-resistant-to-modern-antibiotics microorganism was confirmed. The optimal concentrations of the nanoceria to achieve the maximum biological effect were determined (10 M). It was possible to develop a method for the industrial synthesis of nanoceria, which can be used to produce drugs and medical devices containing CeO NPs.

Keywords

References

  1. Int J Mol Sci. 2023 Sep 24;24(19): [PMID: 37833949]
  2. Science. 2005 Jul 29;309(5735):752-5 [PMID: 16051791]
  3. Chem Rev. 2016 May 25;116(10):5987-6041 [PMID: 27120134]
  4. Molecules. 2022 Apr 21;27(9): [PMID: 35566026]
  5. Biomed Res Int. 2018 Jan 23;2018:1923606 [PMID: 29607315]
  6. J Biomed Mater Res A. 2020 Aug 1;108(8):1703-1712 [PMID: 32208546]
  7. Adv Colloid Interface Sci. 2009 Mar-Jun;147-148:56-66 [PMID: 19027889]
  8. Sci Rep. 2022 Nov 5;12(1):18746 [PMID: 36335167]
  9. Curr Pharm Biotechnol. 2023;24(6):766-779 [PMID: 36017829]
  10. Methods Mol Biol. 2014;1195:33-41 [PMID: 24155234]
  11. Adv Drug Deliv Rev. 2018 Jan 1;123:33-64 [PMID: 28782570]
  12. Molecules. 2024 Jun 15;29(12): [PMID: 38930918]
  13. Biomed Rep. 2024 Jan 29;20(3):48 [PMID: 38357238]
  14. Front Oncol. 2018 Aug 14;8:309 [PMID: 30155442]
  15. Pharmaceutics. 2021 Sep 22;13(10): [PMID: 34683826]
  16. ACS Omega. 2021 Sep 28;6(40):26477-26488 [PMID: 34661003]
  17. Front Bioeng Biotechnol. 2024 May 20;12:1404651 [PMID: 38832127]
  18. RSC Adv. 2020 Apr 14;10(25):14818-14825 [PMID: 35497158]
  19. Chempluschem. 2021 Jan;86(1):49-58 [PMID: 32894011]
  20. Nanomicro Lett. 2016;8(1):13-19 [PMID: 30464989]
  21. Nanomaterials (Basel). 2022 Aug 27;12(17): [PMID: 36080009]
  22. Nanoscale. 2020 Jan 23;12(3):1339-1348 [PMID: 31859321]
  23. Polymers (Basel). 2021 May 01;13(9): [PMID: 34062803]
  24. Nanomaterials (Basel). 2024 Feb 13;14(4): [PMID: 38392727]
  25. Nanomaterials (Basel). 2020 Jan 29;10(2): [PMID: 32013189]
  26. J Zhejiang Univ Sci B. 2024 May 15;25(5):361-388 [PMID: 38725338]
  27. Biomater Adv. 2023 Oct;153:213558 [PMID: 37467646]
  28. Chemosphere. 2022 Jan;286(Pt 1):131651 [PMID: 34346345]
  29. Small. 2020 May;16(20):e1907322 [PMID: 32329572]
  30. Mater Today Bio. 2023 Oct 01;23:100823 [PMID: 37928254]
  31. Int J Mol Sci. 2023 Feb 08;24(4): [PMID: 36834858]
  32. J Inorg Biochem. 2022 May;230:111717 [PMID: 35247856]
  33. Nanomaterials (Basel). 2023 Oct 21;13(20): [PMID: 37887953]
  34. Langmuir. 2022 May 10;38(18):5323-5338 [PMID: 35483044]
  35. Ultrason Sonochem. 2011 Sep;18(5):1118-23 [PMID: 21324726]
  36. Antioxidants (Basel). 2016 May 17;5(2): [PMID: 27196936]
  37. RSC Adv. 2019 Oct 8;9(55):32058-32065 [PMID: 35530782]
  38. Mater Horiz. 2021 Jan 1;8(1):102-123 [PMID: 34821292]
  39. Crit Rev Biotechnol. 2018 Nov;38(7):1003-1024 [PMID: 29402135]
  40. Front Pharmacol. 2024 Aug 02;15:1439960 [PMID: 39156103]
  41. Environ Sci Technol. 2008 Jul 1;42(13):5014-9 [PMID: 18678042]
  42. Rev Environ Contam Toxicol. 2021;253:155-206 [PMID: 32462332]
  43. Nanomaterials (Basel). 2021 Oct 01;11(10): [PMID: 34685037]
  44. J Nanobiotechnology. 2023 Oct 3;21(1):359 [PMID: 37789395]
  45. Nanomedicine (Lond). 2017 Feb;12(4):403-416 [PMID: 28000542]
  46. Int J Environ Res Public Health. 2015 Jan 23;12(2):1253-78 [PMID: 25625406]
  47. ACS Biomater Sci Eng. 2022 Feb 14;8(2):512-525 [PMID: 34989230]
  48. Mediators Inflamm. 2017;2017:7435621 [PMID: 29391667]
  49. Int J Mol Sci. 2022 Nov 11;23(22): [PMID: 36430362]
  50. Adv Healthc Mater. 2024 Mar;13(6):e2302858 [PMID: 37947125]
  51. Pharmaceutics. 2023 Oct 23;15(10): [PMID: 37896269]
  52. J Control Release. 2021 Oct 10;338:164-189 [PMID: 34425166]

Grants

  1. 23-65-10040/Russian Science Foundation

Word Cloud

Created with Highcharts 10.0.0nanoceriasynthesisNPsactivityeffectoptimalmethodceriumconditionsdifferentcellobtainedbiologicalregenerationantimicrobialindustrialhumanfibroblastskeratinocytesCeOsynthesizedsizenmwoundhealingdevelopdrugsevaluationcellsinvolvedskinpropertiesdioxidenanoparticlestransmissionelectronmicroscopyTEMX-raydiffractionRamanspectroscopymassspectrometryconcentrationsvariationsmetabolicproliferativeMmaximum10proposedconfirmeddemonstratedlinesissueeffectiveremainshighlyrelevantobjectivestudynanosizedoxidepowderviathermaldecompositioncarbonateprecipitatedaqueousnitratesolutiontechnicalcreationnewproductionselectmodificationbasedphysicochemicalcharacteristicsmaterialbroad-spectrumstructurewellSeveralmodescarriedstageschemicalphysicalparametersdescribedusingculturesculturedcytotoxicityinvestigatedMTTtestcountingperformedconcentration01-00001studiedpuritypowdersbatches>9999%Accordingdatavaried170methodologiestechnologyselectedobtainingbioactiverepeatabilityresultstermsparticleprovenstructuraldefectssurfacecrystallatticehigherefficiencydueoxygenvacanciesstrainprovidedbestredoxantioxidantbetterregenerativepotentialvariousbeneficialculturemost-resistant-to-modern-antibioticsmicroorganismachievedeterminedpossiblecanusedproducemedicaldevicescontainingDevelopmentTechnologySynthesisNanocrystallineCeriumOxideProductionConditionsBestRegenerativeActivityBiocompatibilityCreationWound-HealingAgentsnanotechnologymethods

Similar Articles

Cited By