Single-Component Starch-Based Hydrogels for Therapeutic Delivery.
Alfio Pulvirenti, Antonella Caterina Boccia, Carolina Constantin, Mihaela Surcel, Adriana Munteanu, Victor-Eduard Peteu, Monica Neagu
Author Information
Alfio Pulvirenti: Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy. ORCID
Antonella Caterina Boccia: Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy. ORCID
Carolina Constantin: "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania. ORCID
Mihaela Surcel: "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania. ORCID
Adriana Munteanu: "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania. ORCID
Victor-Eduard Peteu: "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania. ORCID
Monica Neagu: "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania. ORCID
中文译文
English
Hydrogels are interesting materials as delivery systems of various therapeutic agents, mainly due to the water-swollen network and the localized and sustained drug release. Herein, single-component starch-based hydrogels with enhanced degradation rates were produced by applying a facile synthesis and proposed for a novel delivery system of therapeutic molecules. Starch was oxidized with sodium periodate in water and mild conditions to generate aldehyde derivatives that, after a freeze-thaw procedure, were allowed to compact and stable hydrogels. Oxidized starch was also cross-linked with asparagine through a Schiff base reaction to link the active molecule directly to the polysaccharide structure. The materials were structurally and morphologically characterized, and the ability to adsorb and release over time an active molecule was proven by qNMR spectroscopy. The cytotoxicity was evaluated on CAL-27 cell line (oral squamous cell carcinoma). Results indicated that synthesized hydrogels lead to a "frozen proliferative" state on cells due to the swelling capability in the cell medium. This behavior was confirmed by flow cytometry data indicating the hydrogels induced less "early apoptosis" and more "late apoptosis" in the cells, compared to the untreated control. Since the proposed materials are able to control the cell proliferation, they could open a new scenario within the field of precise therapeutic applications.
Signal Transduct Target Ther. 2024 Jul 1;9(1):166
[PMID: 38945949 ]
Bioconjug Chem. 2021 Aug 18;32(8):1915-1925
[PMID: 34247477 ]
Biomacromolecules. 2020 Sep 14;21(9):3608-3619
[PMID: 32786534 ]
Colloids Surf B Biointerfaces. 2022 Jun;214:112482
[PMID: 35366577 ]
Adv Drug Deliv Rev. 2024 Apr;207:115217
[PMID: 38423362 ]
ACS Nano. 2015 May 26;9(5):4686-97
[PMID: 25938172 ]
Biomater Sci. 2020 Oct 21;8(20):5601-5614
[PMID: 32832942 ]
ACS Nano. 2021 Aug 24;15(8):12687-12722
[PMID: 34374515 ]
Biomacromolecules. 2020 Oct 12;21(10):4180-4193
[PMID: 32786522 ]
Carbohydr Polym. 2023 Feb 15;302:120392
[PMID: 36604070 ]
Biomaterials. 2007 Dec;28(34):5185-92
[PMID: 17697712 ]
Biomacromolecules. 2008 Jan;9(1):269-77
[PMID: 18085745 ]
Nat Commun. 2022 Nov 11;13(1):6835
[PMID: 36369424 ]
Nanoscale. 2023 Mar 23;15(12):5938-5947
[PMID: 36883225 ]
Mater Sci Eng C Mater Biol Appl. 2019 May;98:241-249
[PMID: 30813024 ]
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4102-4127
[PMID: 34137581 ]
Macromol Biosci. 2022 Jul;22(7):e2100475
[PMID: 35388605 ]
Biomater Sci. 2021 Feb 7;9(3):535-573
[PMID: 33185203 ]
ACS Appl Mater Interfaces. 2024 Jan 17;16(2):2027-2040
[PMID: 38183285 ]
Eur J Cancer Clin Oncol. 1988 Sep;24(9):1445-55
[PMID: 3181269 ]
Gels. 2024 Jan 05;10(1):
[PMID: 38247766 ]
Antioxidants (Basel). 2022 Apr 07;11(4):
[PMID: 35453412 ]
Molecules. 2023 Nov 24;28(23):
[PMID: 38067472 ]
Int J Pharm. 2010 Feb 15;386(1-2):15-22
[PMID: 19895878 ]
Science. 1998 Jul 17;281(5375):389-92
[PMID: 9665877 ]
Polymers (Basel). 2022 Dec 09;14(24):
[PMID: 36559766 ]
Carbohydr Polym. 2021 Mar 1;255:117344
[PMID: 33436187 ]
Front Oncol. 2021 Mar 22;11:645686
[PMID: 33869040 ]
J Mater Sci Mater Med. 2019 Oct 10;30(10):115
[PMID: 31599365 ]
Molecules. 2021 Jun 30;26(13):
[PMID: 34209127 ]
Biomater Sci. 2020 Apr 15;8(8):2084-2101
[PMID: 32118241 ]
Biomacromolecules. 2022 May 9;23(5):2051-2063
[PMID: 35411765 ]
Biochemistry. 2018 May 1;57(17):2405-2414
[PMID: 29683665 ]
Molecules. 2020 May 31;25(11):
[PMID: 32486387 ]
Carbohydr Polym. 2019 Mar 1;207:510-520
[PMID: 30600034 ]
Chem Rev. 2023 Jan 25;123(2):834-873
[PMID: 35930422 ]
J Colloid Interface Sci. 2019 May 15;544:121-129
[PMID: 30826530 ]
Clin Transl Med. 2022 Nov;12(11):e1094
[PMID: 36354147 ]
Biomacromolecules. 2017 Feb 13;18(2):316-330
[PMID: 28027640 ]
Tissue Eng Part C Methods. 2021 Jul;27(7):401-410
[PMID: 34082602 ]
Biomacromolecules. 2014 Jun 9;15(6):2188-95
[PMID: 24773153 ]
Bioorg Chem. 2004 Dec;32(6):560-70
[PMID: 15530996 ]
ACS Omega. 2017 Nov 30;2(11):7609-7620
[PMID: 29214232 ]
Molecules. 2019 Feb 08;24(3):
[PMID: 30744011 ]
Mol Syst Biol. 2022 Sep;18(9):e11087
[PMID: 36161508 ]
Int J Biol Macromol. 2018 Jul 1;113:443-449
[PMID: 29486261 ]
Biomater Sci. 2021 Jun 4;9(11):4199-4210
[PMID: 33989376 ]
Biotechnol Adv. 2017 Sep;35(5):530-544
[PMID: 28558979 ]
Biomacromolecules. 2017 Dec 11;18(12):4232-4239
[PMID: 29068674 ]
J Control Release. 2019 Mar 10;297:60-70
[PMID: 30684513 ]
J Mol Biol. 2018 Nov 2;430(23):4619-4635
[PMID: 29949750 ]
J Funct Biomater. 2023 Sep 01;14(9):
[PMID: 37754868 ]
Carbohydr Polym. 2024 Oct 15;342:122340
[PMID: 39048188 ]
Gels. 2023 Dec 04;9(12):
[PMID: 38131937 ]
Molecules. 2019 May 10;24(9):
[PMID: 31083427 ]
Hydrogels
Starch
Humans
Cell Line, Tumor
Drug Delivery Systems
Cell Proliferation
Apoptosis
Drug Liberation
Drug Carriers
Cell Survival
Hydrogels
Starch
Drug Carriers