Deep Learning-Based Classification of Macrofungi: Comparative Analysis of Advanced Models for Accurate Fungi Identification.

Sifa Ozsari, Eda Kumru, Fatih Ekinci, Ilgaz Akata, Mehmet Serdar Guzel, Koray Acici, Eray Ozcan, Tunc Asuroglu
Author Information
  1. Sifa Ozsari: Department of Computer Engineering, Faculty of Engineering, Ankara University, Ankara 06830, Türkiye. ORCID
  2. Eda Kumru: Graduate School of Natural and Applied Sciences, Ankara University, Ankara 06830, Türkiye. ORCID
  3. Fatih Ekinci: Department of Medical Physics, Institute of Nuclear Sciences, Ankara University, Ankara 06100, Türkiye. ORCID
  4. Ilgaz Akata: Department of Biology, Faculty of Science, Ankara University, Ankara 06100, Türkiye.
  5. Mehmet Serdar Guzel: Department of Computer Engineering, Faculty of Engineering, Ankara University, Ankara 06830, Türkiye. ORCID
  6. Koray Acici: Department of Artificial Intelligence and Data Engineering, Faculty of Engineering, Ankara University, Ankara 06830, Türkiye. ORCID
  7. Eray Ozcan: Department of Computer Engineering, Faculty of Engineering, Ankara University, Ankara 06830, Türkiye. ORCID
  8. Tunc Asuroglu: Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland. ORCID

Abstract

This study focuses on the classification of six different macrofungi species using advanced deep learning techniques. Fungi species, such as , , , , and were chosen based on their ecological importance and distinct morphological characteristics. The research employed 5 different machine learning techniques and 12 deep learning models, including DenseNet121, MobileNetV2, ConvNeXt, EfficientNet, and swin transformers, to evaluate their performance in identifying fungi from images. The DenseNet121 model demonstrated the highest accuracy (92%) and AUC score (95%), making it the most effective in distinguishing between species. The study also revealed that transformer-based models, particularly the swin transformer, were less effective, suggesting room for improvement in their application to this task. Further advancements in macrofungi classification could be achieved by expanding datasets, incorporating additional data types such as biochemical, electron microscopy, and RNA/DNA sequences, and using ensemble methods to enhance model performance. The findings contribute valuable insights into both the use of deep learning for biodiversity research and the ecological conservation of macrofungi species.

Keywords

References

  1. J Pathol Inform. 2023 Apr 23;14:100314 [PMID: 37179570]
  2. Sensors (Basel). 2022 Jan 14;22(2): [PMID: 35062595]
  3. PLoS One. 2023 Apr 20;18(4):e0284522 [PMID: 37079536]
  4. Crit Rev Anal Chem. 2023;53(3):634-654 [PMID: 34435928]
  5. Plants (Basel). 2021 Jul 21;10(8): [PMID: 34451545]
  6. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  7. Food Chem. 2022 Oct 1;390:133199 [PMID: 35597089]
  8. Sensors (Basel). 2023 Feb 14;23(4): [PMID: 36850763]
  9. Toxicon. 2006 Apr;47(5):605-7 [PMID: 16564061]
  10. Diagnostics (Basel). 2021 Apr 26;11(5): [PMID: 33925844]
  11. Biology (Basel). 2021 Nov 13;10(11): [PMID: 34827167]
  12. PLoS One. 2015 Mar 04;10(3):e0118432 [PMID: 25738806]
  13. Front Plant Sci. 2021 Aug 19;12:701038 [PMID: 34490004]
  14. Chemistry. 2016 Apr 11;22(16):5786-8 [PMID: 26969909]
  15. J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Jun 1;852(1-2):430-5 [PMID: 17317341]
  16. IMA Fungus. 2022 Jun 30;13(1):13 [PMID: 35773719]
  17. Diagnostics (Basel). 2023 Dec 28;14(1): [PMID: 38201384]
  18. Toxins (Basel). 2024 Aug 13;16(8): [PMID: 39195764]
  19. Bioengineering (Basel). 2024 Aug 09;11(8): [PMID: 39199768]
  20. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  21. Appl Microbiol Biotechnol. 2024 Feb 19;108(1):217 [PMID: 38372792]
  22. Molecules. 2023 Nov 10;28(22): [PMID: 38005237]
  23. BMC Med Imaging. 2022 Oct 15;22(1):178 [PMID: 36243705]
  24. Compr Rev Food Sci Food Saf. 2020 Sep;19(5):2333-2356 [PMID: 33336985]
  25. Trends Cogn Sci. 2007 Oct;11(10):428-34 [PMID: 17921042]

MeSH Term

Deep Learning
Fungi

Word Cloud

Created with Highcharts 10.0.0learningmacrofungispeciesdeepclassificationmodelsDenseNet121studydifferentusingtechniquesFungiecologicalresearchmachineswinperformancefungimodeleffectivefocusessixadvancedchosenbasedimportancedistinctmorphologicalcharacteristicsemployed512includingMobileNetV2ConvNeXtEfficientNettransformersevaluateidentifyingimagesdemonstratedhighestaccuracy92%AUCscore95%makingdistinguishingalsorevealedtransformer-basedparticularlytransformerlesssuggestingroomimprovementapplicationtaskadvancementsachievedexpandingdatasetsincorporatingadditionaldatatypesbiochemicalelectronmicroscopyRNA/DNAsequencesensemblemethodsenhancefindingscontributevaluableinsightsusebiodiversityconservationDeepLearning-BasedClassificationMacrofungi:ComparativeAnalysisAdvancedModelsAccurateIdentificationidentification

Similar Articles

Cited By