Mid-infrared photoacoustic brain imaging enabled by cascaded gas-filled hollow-core fiber lasers.

Cuiling Zhang, Kunyang Sui, Marcello Meneghetti, Jose Enrique Antonio-Lopez, Manoj K Dasa, Rune W Berg, Rodrigo Amezcua-Correa, Yazhou Wang, Christos Markos
Author Information
  1. Cuiling Zhang: Technical University of Denmark, DTU Electro, Lyngby, Denmark.
  2. Kunyang Sui: Technical University of Denmark, DTU Electro, Lyngby, Denmark.
  3. Marcello Meneghetti: Technical University of Denmark, DTU Electro, Lyngby, Denmark.
  4. Jose Enrique Antonio-Lopez: University of Central Florida, CREOL, The College of Optics and Photonics, Orlando, Florida, United States.
  5. Manoj K Dasa: NKT Photonics A/S, Birkerød, Denmark. ORCID
  6. Rune W Berg: University of Copenhagen, Department of Neuroscience, Copenhagen, Denmark.
  7. Rodrigo Amezcua-Correa: University of Central Florida, CREOL, The College of Optics and Photonics, Orlando, Florida, United States.
  8. Yazhou Wang: Technical University of Denmark, DTU Electro, Lyngby, Denmark.
  9. Christos Markos: Technical University of Denmark, DTU Electro, Lyngby, Denmark. ORCID

Abstract

Significance: Extending the photoacoustic microscopy (PAM) into the mid-infrared (MIR) molecular fingerprint region constitutes a promising route toward label-free imaging of biological molecular structures. Realizing this objective requires a high-energy nanosecond MIR laser source. However, existing MIR laser technologies are limited to either low pulse energy or free-space structure that is sensitive to environmental conditions. Fiber lasers are promising technologies for PAM for their potential to offer both high pulse energy and robust performance, which however have not yet been used for PAM because it is still at the infant research stage.
Aim: We aim to employ the emerging gas-filled anti-resonant hollow-core fiber (ARHCF) laser technology for MIR-PAM for the purpose of imaging myelin-rich regions in a mouse brain.
Approach: This laser source is developed with a high-pulse-energy nanosecond laser at , targeting the main absorption band of myelin sheaths, the primary chemical component of axons in the central nervous system. The laser mechanism relies on two-order gas-induced vibrational stimulated Raman scattering for non-linear wavelength conversion, starting from a 1060-nm pump laser to through the two-stage gas-filled ARHCFs.
Results: The developed fiber Raman laser was used for the first time for MIR-PAM of mouse brain regions containing structures rich in myelin. The high peak power of and robust performance of the generated MIR Raman pulse addressed the challenge faced by the commonly used MIR lasers.
Conclusions: We pioneered the potential use of high-energy and nanosecond gas-filled ARHCF laser source to MIR-PAM, with a first attempt to report this kind of fiber laser source for PAM of lipid-rich myelin regions in a mouse brain. We also open up possibilities for expanding into a versatile multiwavelength laser source covering multiple biomarkers and being employed to image other materials such as plastics.

Keywords

References

  1. Sci Rep. 2020 Mar 18;10(1):4912 [PMID: 32188918]
  2. Sci Rep. 2022 Jun 22;12(1):10590 [PMID: 35732808]
  3. Nat Photonics. 2009 Aug 29;3(9):503-509 [PMID: 20161535]
  4. Opt Express. 2017 Apr 3;25(7):7637-7644 [PMID: 28380883]
  5. Photoacoustics. 2023 Jan 27;29:100456 [PMID: 36785577]
  6. Photoacoustics. 2022 Apr 11;26:100354 [PMID: 35465607]
  7. Nat Commun. 2024 Nov 1;15(1):9427 [PMID: 39487113]
  8. Sci Rep. 2021 Feb 10;11(1):3512 [PMID: 33568763]
  9. Opt Lett. 2020 Apr 1;45(7):1938-1941 [PMID: 32236037]
  10. Nat Biotechnol. 2020 Mar;38(3):293-296 [PMID: 31873214]
  11. Photoacoustics. 2022 Jan 15;25:100331 [PMID: 35096525]
  12. Sci Rep. 2019 Mar 14;9(1):4446 [PMID: 30872762]
  13. Opt Lett. 2018 Jan 15;43(2):296-299 [PMID: 29328264]
  14. Biomed Opt Express. 2017 Dec 19;9(1):276-288 [PMID: 29359103]
  15. Sci Adv. 2016 Sep 28;2(9):e1600521 [PMID: 27704043]
  16. Photoacoustics. 2016 Aug 16;4(3):83-90 [PMID: 27761407]
  17. Opt Express. 2018 Mar 5;26(5):5609-5615 [PMID: 29529763]
  18. J Biomed Opt. 2020 Oct;25(10): [PMID: 33118344]
  19. Opt Express. 2017 Jun 12;25(12):13351-13358 [PMID: 28788872]
  20. J Neural Eng. 2022 Feb 24;19(1): [PMID: 35130533]
  21. Nat Metab. 2024 Apr;6(4):678-686 [PMID: 38538980]
  22. Opt Lett. 2019 Dec 1;44(23):5856-5859 [PMID: 31774797]
  23. Sci Rep. 2019 Apr 11;9(1):5945 [PMID: 30976009]
  24. Nat Biotechnol. 2005 Mar;23(3):313-20 [PMID: 15765087]
  25. Science. 2007 Nov 16;318(5853):1118-21 [PMID: 18006741]
  26. Nat Photonics. 2019 Sep;13:609-615 [PMID: 31440304]
  27. Opt Express. 2018 Apr 2;26(7):8224-8231 [PMID: 29715791]
  28. Opt Lett. 2019 Nov 1;44(21):5318-5321 [PMID: 31674997]
  29. Npj Imaging. 2023;1(1):3 [PMID: 38665236]
  30. Opt Lett. 2017 Oct 15;42(20):4055-4058 [PMID: 29028011]
  31. Opt Express. 2007 Feb 5;15(3):865-71 [PMID: 19532312]
  32. Opt Lett. 2018 Oct 1;43(19):4671-4674 [PMID: 30272711]
  33. Opt Lett. 2021 Oct 15;46(20):5133-5136 [PMID: 34653133]
  34. Photoacoustics. 2019 Aug 09;15:100141 [PMID: 31463194]
  35. Opt Express. 2021 Feb 1;29(3):4048-4057 [PMID: 33770992]
  36. Opt Express. 2019 May 13;27(10):15032-15045 [PMID: 31163942]
  37. Opt Express. 2019 Feb 18;27(4):3824-3836 [PMID: 30876007]
  38. Opt Lett. 2018 Oct 15;43(20):4875-4878 [PMID: 30320772]
  39. Biomed Opt Express. 2018 Mar 20;9(4):1762-1770 [PMID: 29675317]
  40. Opt Express. 2014 Oct 6;22(20):23807-28 [PMID: 25321960]
  41. Nat Biomed Eng. 2019 May;3(5):392-401 [PMID: 30992553]
  42. Opt Lett. 2021 Feb 1;46(3):452-455 [PMID: 33528382]

Word Cloud

Created with Highcharts 10.0.0laserMIRsourcegas-filledfiberPAMbrainmyelinphotoacousticimagingnanosecondpulselasersusedhollow-coreMIR-PAMregionsmouseRamanmicroscopymid-infraredmolecularpromisingstructureshigh-energytechnologiesenergypotentialhighrobustperformanceARHCFdevelopedfirstSignificance:Extendingfingerprintregionconstitutesroutetowardlabel-freebiologicalRealizingobjectiverequiresHoweverexistinglimitedeitherlowfree-spacestructuresensitiveenvironmentalconditionsFiberofferhoweveryetstillinfantresearchstageAim:aimemployemerginganti-resonanttechnologypurposemyelin-richApproach:high-pulse-energytargetingmainabsorptionbandsheathsprimarychemicalcomponentaxonscentralnervoussystemmechanismreliestwo-ordergas-inducedvibrationalstimulatedscatteringnon-linearwavelengthconversionstarting1060-nmpumptwo-stageARHCFsResults:timecontainingrichpeakpowergeneratedaddressedchallengefacedcommonlyConclusions:pioneereduseattemptreportkindlipid-richalsoopenpossibilitiesexpandingversatilemultiwavelengthcoveringmultiplebiomarkersemployedimagematerialsplasticsMid-infraredenabledcascadedlipids

Similar Articles

Cited By

No available data.