Rigidity transition of a highly compressible granular medium.

Samuel Poincloux, Kazumasa A Takeuchi
Author Information
  1. Samuel Poincloux: Department of Physics, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan. ORCID
  2. Kazumasa A Takeuchi: Department of Physics, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan. ORCID

Abstract

A wide range of disordered materials, from biological to geological assemblies, feature discrete elements undergoing large shape changes. How significant geometrical variations at the microscopic scale affect the response of the assembly, in particular rigidity transitions, is an ongoing challenge in soft matter physics. However, the lack of a model granular-like experimental system featuring large and versatile particle deformability impedes advances. Here, we explore the oscillatory shear response of a sponge-like granular assembly composed of highly compressible elastic rings. We highlight a progressive rigidity transition, switching from a yielded phase to a solid one by increasing density or decreasing shear amplitude. The rearranging yielded state consists of crystal clusters separated by melted regions; in contrast, the solid state remains amorphous and absorbs all imposed shear elastically. We rationalize this transition by uncovering an effective, attractive shear force between rings that emerges from a friction-geometry interplay. If friction is sufficiently high, the extent of the contacts between rings, captured analytically by elementary geometry, controls the rigidity transition.

Keywords

References

  1. J Chem Phys. 2021 Apr 21;154(15):154901 [PMID: 33887924]
  2. Nat Commun. 2024 Jul 5;15(1):5645 [PMID: 38969629]
  3. Proc Natl Acad Sci U S A. 2021 May 4;118(18): [PMID: 33931504]
  4. Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2209109119 [PMID: 36279442]
  5. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11736-11741 [PMID: 30381457]
  6. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10203-10209 [PMID: 32341154]
  7. Soft Matter. 2019 Jul 24;15(29):5854-5865 [PMID: 31246221]
  8. Phys Rev Lett. 2018 Dec 14;121(24):248003 [PMID: 30608748]
  9. Phys Rev Lett. 2007 Jun 15;98(24):248001 [PMID: 17677997]
  10. Phys Rev Lett. 2018 Feb 2;120(5):055701 [PMID: 29481202]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011302 [PMID: 21867159]
  12. Sci Adv. 2024 May 10;10(19):eadi8433 [PMID: 38718115]
  13. Soft Matter. 2024 Feb 21;20(8):1702-1718 [PMID: 38284215]
  14. Sci Adv. 2023 Jun 2;9(22):eadf8106 [PMID: 37256946]
  15. Phys Rev Lett. 2018 May 18;120(20):208001 [PMID: 29864372]
  16. Phys Rev Lett. 1992 Jan 13;68(2):216-219 [PMID: 10045565]
  17. Nature. 2006 Jun 8;441(7094):727-30 [PMID: 16760972]
  18. Phys Rev Lett. 2014 Jan 17;112(2):028302 [PMID: 24484046]
  19. Phys Rev Lett. 2014 Oct 3;113(14):148001 [PMID: 25325661]
  20. Nat Mater. 2015 Oct;14(10):1040-8 [PMID: 26237129]
  21. Phys Rev X. 2016 Apr-Jun;6(2): [PMID: 28966874]
  22. Soft Matter. 2019 Oct 14;15(38):7557-7566 [PMID: 31528879]
  23. J Chem Phys. 2013 Mar 28;138(12):12A507 [PMID: 23556758]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011305 [PMID: 21867162]
  25. Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8366-8373 [PMID: 32241886]
  26. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):49-53 [PMID: 25538298]
  27. Phys Rev Lett. 2023 Jul 28;131(4):047101 [PMID: 37566855]
  28. Phys Rev E. 2016 Aug;94(2-1):022615 [PMID: 27627368]
  29. Phys Rev E. 2020 Mar;101(3-1):032905 [PMID: 32289976]
  30. Nature. 2024 Apr;628(8008):545-550 [PMID: 38570688]
  31. Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2408706121 [PMID: 39602252]
  32. Phys Rev E. 2023 Oct;108(4-1):044901 [PMID: 37978664]
  33. Soft Matter. 2017 Dec 6;13(47):9036-9045 [PMID: 29177346]
  34. Phys Rev Lett. 2005 Jan 14;94(1):015701 [PMID: 15698097]
  35. Phys Rev Lett. 2012 Mar 9;108(10):108001 [PMID: 22463455]
  36. Phys Rev Lett. 2022 Nov 23;129(22):228004 [PMID: 36493438]
  37. Elife. 2015 Dec 12;4: [PMID: 26653285]
  38. Phys Rev Lett. 2023 Mar 31;130(13):130002 [PMID: 37067323]
  39. Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2317915121 [PMID: 38536751]
  40. Phys Rev Lett. 2022 May 20;128(20):208002 [PMID: 35657892]
  41. Trends Cell Biol. 2022 May;32(5):433-444 [PMID: 35058104]
  42. Soft Matter. 2021 Nov 10;17(43):9901-9915 [PMID: 34697616]
  43. Phys Rev Lett. 2012 Jul 6;109(1):018301 [PMID: 23031135]

Grants

  1. JP22KF0084/MEXT | Japan Society for the Promotion of Science (JSPS)
  2. JP20H00128/MEXT | Japan Society for the Promotion of Science (JSPS)
  3. JP19H05800/MEXT | Japan Society for the Promotion of Science (JSPS)
  4. JP24K00593/MEXT | Japan Society for the Promotion of Science (JSPS)

Word Cloud

Created with Highcharts 10.0.0transitionrigidityshearringsdisorderedlargeresponseassemblygranularhighlycompressibleyieldedsolidstatefrictiongeometrywiderangematerialsbiologicalgeologicalassembliesfeaturediscreteelementsundergoingshapechangessignificantgeometricalvariationsmicroscopicscaleaffectparticulartransitionsongoingchallengesoftmatterphysicsHoweverlackmodelgranular-likeexperimentalsystemfeaturingversatileparticledeformabilityimpedesadvancesexploreoscillatorysponge-likecomposedelastichighlightprogressiveswitchingphaseoneincreasingdensitydecreasingamplituderearrangingconsistscrystalclustersseparatedmeltedregionscontrastremainsamorphousabsorbsimposedelasticallyrationalizeuncoveringeffectiveattractiveforceemergesfriction-geometryinterplaysufficientlyhighextentcontactscapturedanalyticallyelementarycontrolsRigiditymediummedia

Similar Articles

Cited By (1)