Enhanced prediction of hemolytic activity in antimicrobial peptides using deep learning-based sequence analysis.

Ibrahim Abdelbaky, Mohamed Elhakeem, Hilal Tayara, Elsayed Badr, Mustafa Abdul Salam
Author Information
  1. Ibrahim Abdelbaky: Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt. ibrahim.abdelbaky@fci.bu.edu.eg.
  2. Mohamed Elhakeem: Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt. mohamed.abdelhady@fci.bu.edu.eg.
  3. Hilal Tayara: School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea. hilaltayara@jbnu.ac.kr.
  4. Elsayed Badr: Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt.
  5. Mustafa Abdul Salam: Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt.

Abstract

Antimicrobial peptides (AMPs) are a promising class of antimicrobial drugs due to their broad-spectrum activity against microorganisms. However, their clinical application is limited by their potential to cause hemolysis, the destruction of red blood cells. To address this issue, we propose a deep learning model based on convolutional neural networks (CNNs) for predicting the hemolytic activity of AMPs. Peptide sequences are represented using one-hot encoding, and the CNN architecture consists of multiple convolutional and fully connected layers. The model was trained on six different datasets: HemoPI-1, HemoPI-2, HemoPI-3, RNN-Hem, Hlppredfuse, and AMP-Combined, achieving Matthew's correlation coefficients of 0.9274, 0.5614, 0.6051, 0.6142, 0.8799, and 0.7484, respectively. Our model outperforms previously reported methods and can facilitate the development of novel AMPs with reduced hemolytic activity, which is crucial for their therapeutic use in treating bacterial infections.

Keywords

References

  1. Nucleic Acids Res. 2021 Jan 8;49(D1):D288-D297 [PMID: 33151284]
  2. Sci Rep. 2016 Mar 08;6:22843 [PMID: 26953092]
  3. Chem Soc Rev. 2021 Jul 5;50(13):7820-7880 [PMID: 34042120]
  4. ACS Biomater Sci Eng. 2023 Aug 14;9(8):4654-4661 [PMID: 37486982]
  5. Future Med Chem. 2017 Mar;9(3):275-291 [PMID: 28211294]
  6. Nucleic Acids Res. 2000 Jan 1;28(1):374 [PMID: 10592278]
  7. Chem Res Toxicol. 2019 Jun 17;32(6):1014-1026 [PMID: 30915843]
  8. Brief Bioinform. 2024 Mar 27;25(3): [PMID: 38706321]
  9. Med Res Rev. 2019 May;39(3):831-859 [PMID: 30353555]
  10. Chem Sci. 2021 Jun 7;12(26):9221-9232 [PMID: 34349895]
  11. Protein Sci. 2023 Oct;32(10):e4758 [PMID: 37595093]
  12. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34651655]
  13. J Bioinform Comput Biol. 2021 Oct;19(5):2150021 [PMID: 34353244]
  14. Sci Rep. 2020 Oct 6;10(1):16581 [PMID: 33024236]
  15. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2364-2374 [PMID: 32142454]
  16. Methods Mol Biol. 2022;2405:1-37 [PMID: 35298806]
  17. Biomech Model Mechanobiol. 2020 Apr;19(2):591-602 [PMID: 31612342]
  18. Bioinformatics. 2020 Jun 1;36(11):3350-3356 [PMID: 32145017]
  19. Bioinformatics. 2019 Nov 1;35(21):4272-4280 [PMID: 30994882]
  20. J Chem Inf Model. 2021 Aug 23;61(8):3789-3803 [PMID: 34327990]
  21. IEEE J Biomed Health Inform. 2023 Apr 05;PP: [PMID: 37018101]
  22. Nucleic Acids Res. 2014 Jan;42(Database issue):D444-9 [PMID: 24174543]
  23. Curr Issues Mol Biol. 2001 Jul;3(3):47-55 [PMID: 11488411]
  24. Methods Mol Biol. 2017;1548:427-435 [PMID: 28013523]
  25. Sci Rep. 2020 Jul 2;10(1):10869 [PMID: 32616760]
  26. ChemMedChem. 2022 Sep 5;17(17):e202200291 [PMID: 35880810]
  27. BMC Bioinformatics. 2022 Sep 26;23(1):389 [PMID: 36163001]

MeSH Term

Deep Learning
Hemolysis
Antimicrobial Peptides
Humans
Neural Networks, Computer
Computational Biology

Chemicals

Antimicrobial Peptides

Word Cloud

Created with Highcharts 10.0.00activitypeptidesAMPsmodelhemolyticAntimicrobialantimicrobialdeeplearningconvolutionalusingpromisingclassdrugsduebroad-spectrummicroorganismsHoweverclinicalapplicationlimitedpotentialcausehemolysisdestructionredbloodcellsaddressissueproposebasedneuralnetworksCNNspredictingPeptidesequencesrepresentedone-hotencodingCNNarchitectureconsistsmultiplefullyconnectedlayerstrainedsixdifferentdatasets:HemoPI-1HemoPI-2HemoPI-3RNN-HemHlppredfuseAMP-CombinedachievingMatthew'scorrelationcoefficients927456146051614287997484respectivelyoutperformspreviouslyreportedmethodscanfacilitatedevelopmentnovelreducedcrucialtherapeuticusetreatingbacterialinfectionsEnhancedpredictionlearning-basedsequenceanalysispeptideDeepHemolyticTherapeutic

Similar Articles

Cited By