Frazil ice changes winter biogeochemical processes in the Lena River.

Sophie Opfergelt, Fran��ois Gaspard, Catherine Hirst, Laurence Monin, Bennet Juhls, Anne Morgenstern, Michael Angelopoulos, Pier Paul Overduin
Author Information
  1. Sophie Opfergelt: Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium. ORCID
  2. Fran��ois Gaspard: Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
  3. Catherine Hirst: Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium. ORCID
  4. Laurence Monin: Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
  5. Bennet Juhls: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany.
  6. Anne Morgenstern: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany. ORCID
  7. Michael Angelopoulos: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany. ORCID
  8. Pier Paul Overduin: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany. ORCID

Abstract

The ice-covered period of large Arctic rivers is shortening. To what extent will this affect biogeochemical processing of nutrients? Here we reveal, with silicon isotopes (��Si), a key winter pathway for nutrients under river ice. During colder winter phases in the Lena River catchment, conditions are met for frazil ice accumulation, which creates microzones. These are conducive to a lengthened reaction time for biogeochemical processes under ice. The heavier ��Si values (3.5��������0.5 ���) in river water reflect that 39��������11% of the Lena River discharge went through these microzones. Freezing-driven amorphous silica precipitation concomitant to increased ammonium concentration and changes in dissolved organic carbon aromaticity in Lena River water support microbially mediated processing of nutrients in the microzones. Upon warming, suppressing loci for winter intra-river nitrogen processing is likely to modify the balance between NO production and consumption, a greenhouse gas with a large global warming potential.

Keywords

References

  1. Front Microbiol. 2014 Aug 20;5:425 [PMID: 25191307]
  2. Ambio. 2022 Feb;51(2):423-438 [PMID: 34914031]
  3. Nat Commun. 2021 Nov 25;12(1):6917 [PMID: 34824255]
  4. Nat Commun. 2021 Jan 8;12(1):169 [PMID: 33420093]
  5. Nat Commun. 2022 Oct 14;13(1):6074 [PMID: 36241637]
  6. Front Microbiol. 2019 Nov 29;10:2628 [PMID: 31849850]
  7. Science. 2018 Aug 10;361(6402):585-588 [PMID: 29954985]
  8. Sci Rep. 2019 Apr 17;9(1):6231 [PMID: 30996247]
  9. Microorganisms. 2022 May 12;10(5): [PMID: 35630464]

Word Cloud

Created with Highcharts 10.0.0wintericeLenaRiverbiogeochemicalprocessingmicrozoneslarge��Sinutrientsriverprocesseswaterchangeswarmingice-coveredperiodArcticriversshorteningextentwillaffectnutrients?revealsiliconisotopeskeypathwaycolderphasescatchmentconditionsmetfrazilaccumulationcreatesconducivelengthenedreactiontimeheaviervalues35��������05���reflect39��������11%dischargewentFreezing-drivenamorphoussilicaprecipitationconcomitantincreasedammoniumconcentrationdissolvedorganiccarbonaromaticitysupportmicrobiallymediatedUponsuppressinglociintra-rivernitrogenlikelymodifybalanceNOproductionconsumptiongreenhousegasglobalpotentialFrazilCryosphericscienceElementcyclesGeochemistryHydrology

Similar Articles

Cited By