Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities.

Hanfeng Zhang, Tiantian Zheng, Yue Wang, Ting Li, Qing Chi
Author Information
  1. Hanfeng Zhang: National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
  2. Tiantian Zheng: National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
  3. Yue Wang: National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
  4. Ting Li: National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
  5. Qing Chi: National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.

Abstract

With the growth of the global population and the increasing scarcity of resources, the sustainability and efficiency improvement of agricultural production have become urgent needs. The rapid development of nanotechnology provides new solutions to this challenge, especially the application of nanoparticles in agriculture, which is gradually demonstrating its unique advantages and broad prospects. Nonetheless, various nanoparticles can influence plant growth in diverse manners, often through distinct mechanisms of action. Beyond their direct effects on the plant itself, they frequently alter the physicochemical properties of the soil and modulate the structure of microbial communities in the rhizosphere. This review focuses intently on the diverse methods through which nanoparticles can modulate plant growth, delving deeply into the interactions between nanoparticles and plants, as well as nanoparticles with soil and microbial communities. The aim is to offer a comprehensive reference for the utilization of functionalized nanoparticles in the agricultural sector.

Keywords

References

  1. FEMS Microbiol Lett. 2013 May;342(2):179-86 [PMID: 23461635]
  2. Environ Sci Technol. 2020 Oct 20;54(20):13137-13146 [PMID: 32954728]
  3. ACS Nano. 2013 Oct 22;7(10):8972-80 [PMID: 24016217]
  4. Trends Plant Sci. 2023 Apr;28(4):390-398 [PMID: 36470795]
  5. Planta. 2021 Sep 07;254(4):66 [PMID: 34491441]
  6. J Hazard Mater. 2022 Aug 15;436:129090 [PMID: 35596987]
  7. J Hazard Mater. 2022 Jun 15;432:128763 [PMID: 35349848]
  8. Sci Total Environ. 2019 Oct 20;688:926-934 [PMID: 31726574]
  9. J Biotechnol. 2016 Sep 10;233:84-94 [PMID: 27422354]
  10. Nanomaterials (Basel). 2022 Aug 03;12(15): [PMID: 35957097]
  11. J Hazard Mater. 2023 Feb 5;443(Pt B):130275 [PMID: 36327852]
  12. Nat Nanotechnol. 2021 Jun;16(6):617-629 [PMID: 34117462]
  13. Annu Rev Phytopathol. 2015;53:403-24 [PMID: 26243728]
  14. iScience. 2022 Dec 08;26(1):105763 [PMID: 36582831]
  15. Environ Sci Pollut Res Int. 2020 Jun;27(16):19049-19057 [PMID: 30484042]
  16. Heliyon. 2024 Mar 15;10(6):e27579 [PMID: 38533066]
  17. Nat Nanotechnol. 2019 Jun;14(6):517-522 [PMID: 31168073]
  18. Int J Biol Macromol. 2024 Mar;260(Pt 2):129522 [PMID: 38246470]
  19. J Hazard Mater. 2019 Feb 15;364:591-599 [PMID: 30390579]
  20. Mol Ecol. 2023 May;32(9):2335-2350 [PMID: 36762879]
  21. J Agric Food Chem. 2018 Oct 31;66(43):11209-11220 [PMID: 30299956]
  22. Environ Sci Technol. 2013 May 7;47(9):4734-42 [PMID: 23540424]
  23. Environ Int. 2024 Aug;190:108859 [PMID: 38970982]
  24. Environ Res. 2023 Dec 1;238(Pt 1):117123 [PMID: 37717803]
  25. Sci Total Environ. 2023 Jun 20;878:163175 [PMID: 37003329]
  26. Ecotoxicol Environ Saf. 2024 Jul 15;280:116552 [PMID: 38850694]
  27. Environ Sci Technol. 2021 Oct 19;55(20):13443-13451 [PMID: 34029070]
  28. ACS Omega. 2022 Jul 21;7(30):25909-25920 [PMID: 35936412]
  29. J Agric Food Chem. 2016 Apr 27;64(16):3111-8 [PMID: 27054413]
  30. Curr Opin Plant Biol. 2017 Oct;39:66-72 [PMID: 28654805]
  31. Ecol Evol. 2016 Sep 23;6(20):7387-7396 [PMID: 28725406]
  32. Front Microbiol. 2021 Nov 05;12:773116 [PMID: 34803993]
  33. PeerJ. 2023 Jul 12;11:e15652 [PMID: 37456883]
  34. Appl Biochem Biotechnol. 2024 Feb;196(2):1008-1043 [PMID: 37314636]
  35. Cancers (Basel). 2021 Jun 05;13(11): [PMID: 34198769]
  36. Environ Toxicol Chem. 2018 Oct;37(10):2619-2632 [PMID: 29978493]
  37. Genome Announc. 2016 Jul 14;4(4): [PMID: 27417835]
  38. Microbiome. 2017 Jun 24;5(1):65 [PMID: 28646918]
  39. ISME J. 2014 Apr;8(4):790-803 [PMID: 24196324]
  40. ACS Nano. 2022 Jan 25;16(1):1170-1181 [PMID: 35023717]
  41. Nanomaterials (Basel). 2021 Oct 14;11(10): [PMID: 34685156]
  42. Genome Biol. 2020 Apr 6;21(1):89 [PMID: 32252812]
  43. FEMS Microbiol Ecol. 2019 May 1;95(5): [PMID: 30916760]
  44. J Hazard Mater. 2019 Oct 15;378:120754 [PMID: 31226594]
  45. Chemosphere. 2013 Jan;90(2):640-6 [PMID: 23040650]
  46. Nat Commun. 2024 Jan 2;15(1):128 [PMID: 38167856]
  47. Molecules. 2021 Dec 30;27(1): [PMID: 35011455]
  48. Plants (Basel). 2021 Dec 30;11(1): [PMID: 35009112]
  49. Chemosphere. 2020 Sep;254:126791 [PMID: 32320834]
  50. Indian J Microbiol. 2019 Sep;59(3):273-287 [PMID: 31388204]
  51. Nat Nanotechnol. 2022 Apr;17(4):347-360 [PMID: 35332293]
  52. Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2304306120 [PMID: 37364127]
  53. Nat Rev Microbiol. 2024 Apr;22(4):226-239 [PMID: 37863969]
  54. J Proteomics. 2016 Mar 30;137:45-51 [PMID: 26376098]
  55. Environ Sci Technol. 2024 Jun 4;58(22):9875-9886 [PMID: 38722770]
  56. Environ Geochem Health. 2024 Jul 4;46(8):281 [PMID: 38963650]
  57. J Agric Food Chem. 2019 Jul 10;67(27):7598-7608 [PMID: 31199637]
  58. Sci Total Environ. 2024 Mar 1;914:169824 [PMID: 38185142]
  59. ACS Appl Bio Mater. 2020 Mar 16;3(3):1344-1353 [PMID: 35021628]
  60. Environ Sci Pollut Res Int. 2018 Feb;25(6):6026-6035 [PMID: 29238929]
  61. Nanomaterials (Basel). 2022 Dec 05;12(23): [PMID: 36500947]
  62. Environ Sci Technol. 2023 Jun 20;57(24):8943-8953 [PMID: 37285309]
  63. J Agric Food Chem. 2018 Nov 21;66(46):12166-12178 [PMID: 30421919]
  64. ACS Nano. 2017 Feb 28;11(2):1214-1221 [PMID: 28121129]
  65. Small. 2023 Apr;19(15):e2207136 [PMID: 36599658]
  66. J Hazard Mater. 2022 Feb 15;424(Pt A):127374 [PMID: 34879568]
  67. Environ Sci Technol. 2023 Mar 7;57(9):3980-3989 [PMID: 36808949]
  68. Front Plant Sci. 2017 Apr 04;8:471 [PMID: 28421100]
  69. Front Plant Sci. 2023 Mar 10;14:1063618 [PMID: 36968426]
  70. Biotechnol Adv. 2011 Nov-Dec;29(6):792-803 [PMID: 21729746]
  71. Chemosphere. 2022 Jan;287(Pt 2):132107 [PMID: 34492409]
  72. Nat Nanotechnol. 2019 Jun;14(6):532-540 [PMID: 31168071]
  73. Trends Plant Sci. 2023 Nov;28(11):1310-1325 [PMID: 37453924]
  74. Planta. 2024 Jun 26;260(2):34 [PMID: 38922515]
  75. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  76. Bioresour Technol. 2024 Jan;391(Pt B):129987 [PMID: 37951551]
  77. Plant Sci. 2019 Dec;289:110270 [PMID: 31623775]
  78. Environ Pollut. 2023 Aug 15;331(Pt 1):121925 [PMID: 37257808]
  79. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20 [PMID: 25605935]
  80. Nanomaterials (Basel). 2021 Jul 22;11(8): [PMID: 34443714]
  81. Plant Biotechnol J. 2019 Sep;17(9):1823-1833 [PMID: 30811829]
  82. Environ Sci Technol. 2020 Jul 21;54(14):8699-8709 [PMID: 32579348]
  83. Environ Sci Technol. 2019 May 7;53(9):4959-4967 [PMID: 30920811]
  84. ACS Appl Mater Interfaces. 2021 Nov 10;13(44):52274-52294 [PMID: 34709033]
  85. Environ Sci Technol. 2024 May 28;58(21):9051-9060 [PMID: 38742946]
  86. Sci Total Environ. 2017 Dec 31;609:799-806 [PMID: 28768212]
  87. Crit Rev Biotechnol. 2024 May 26;:1-21 [PMID: 38797671]
  88. Chem Sci. 2024 Mar 1;15(13):4709-4722 [PMID: 38550705]
  89. Nat Commun. 2018 Jul 16;9(1):2738 [PMID: 30013066]
  90. Plants (Basel). 2022 Dec 22;12(1): [PMID: 36616172]

Word Cloud

Created with Highcharts 10.0.0nanoparticlesplantsoilmicrobialcommunitiesgrowthagriculturalcandiversemodulaterhizosphereplantsnutrientglobalpopulationincreasingscarcityresourcessustainabilityefficiencyimprovementproductionbecomeurgentneedsrapiddevelopmentnanotechnologyprovidesnewsolutionschallengeespeciallyapplicationagriculturegraduallydemonstratinguniqueadvantagesbroadprospectsNonethelessvariousinfluencemannersoftendistinctmechanismsactionBeyonddirecteffectsfrequentlyalterphysicochemicalpropertiesstructurereviewfocusesintentlymethodsdelvingdeeplyinteractionswellaimoffercomprehensivereferenceutilizationfunctionalizedsectorMultifacetedimpactsabsorptionuptake

Similar Articles

Cited By