Insights on exploring the therapeutic potential and structural modification of Tetrandrine.

Liang Gong, He Liu, Bo Xu, Tao Yu, Yi Wang, Sheng-Li Niu, Rong Zeng, Qin Ouyang
Author Information
  1. Liang Gong: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.
  2. He Liu: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.
  3. Bo Xu: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.
  4. Tao Yu: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.
  5. Yi Wang: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.
  6. Sheng-Li Niu: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.
  7. Rong Zeng: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.
  8. Qin Ouyang: Department of Medicinal Chemistry, Third Military Medical University, Chongqing, China.

Abstract

Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid from , is noted for its diverse pharmacological effects but faces limitations in clinical use due to toxicity, poor solubility, and low bioavailability. Researchers are working to address these issues by developing Tet derivatives with greater therapeutic potential through structural modification. Generally, key modifications include: 1) introducing an aromatic heterocycle or a hydrophobic alkyne unit at the -5 position can enhance its antitumor activity; 2) adding an amide, sulfonamide, or electron-withdrawing group at the -14 position can enhance its antitumor activity; 3) changing its structure to a quaternary ammonium salt can alter its solubility and greatly boost its antibacterial activity; 4) structural modification of the -12-methoxybenzyl motif can enhance its metabolic stability and thus change the activity of the analogs; 5) Tet structural simplification may result in the identification of anticancer lead compounds with novel mechanisms of action. This review systematically summarizes these modification strategies and evaluates the biological activities of Tet derivatives, aiming to guide further optimization and facilitate the discovery of lead analogs with improved efficacy. The future direction and possibility of Tet structural optimization are also considered.

Keywords

References

  1. Toxicol In Vitro. 2011 Dec;25(8):1834-40 [PMID: 22001142]
  2. Inflammopharmacology. 2024 Jun;32(3):1743-1757 [PMID: 38568399]
  3. Microb Drug Resist. 2017 Sep;23(6):674-681 [PMID: 28080217]
  4. J Org Chem. 1973 May 18;38(10):1846-52 [PMID: 4698926]
  5. J Ethnopharmacol. 1997 Oct;58(2):117-23 [PMID: 9406900]
  6. Biochem Biophys Res Commun. 1989 Dec 15;165(2):758-65 [PMID: 2688645]
  7. Phytomedicine. 2021 Sep;90:153627 [PMID: 34247115]
  8. Cancer Chemother Pharmacol. 2004 Apr;53(4):349-56 [PMID: 14666379]
  9. Eur J Med Chem. 2020 Dec 1;207:112810 [PMID: 32942071]
  10. Pharm Res. 2003 Sep;20(9):1381-8 [PMID: 14567631]
  11. Int J Neurosci. 2015;125(9):703-10 [PMID: 25233150]
  12. Am J Physiol Heart Circ Physiol. 2015 Jun 15;308(12):H1564-74 [PMID: 25862829]
  13. ACS Omega. 2023 Jul 26;8(31):28156-28164 [PMID: 37576675]
  14. Acta Pharmacol Sin. 2022 May;43(5):1274-1284 [PMID: 34417574]
  15. Oncol Rep. 2013 Jun;29(6):2205-10 [PMID: 23525490]
  16. Life Sci. 2001 May 11;68(25):2863-72 [PMID: 11432452]
  17. Biomed Pharmacother. 2022 May;149:112873 [PMID: 35349932]
  18. Bioorg Med Chem Lett. 2017 Feb 1;27(3):533-536 [PMID: 28057423]
  19. J Vasc Surg. 2016 Nov;64(5):1468-1477 [PMID: 26527422]
  20. Bioorg Chem. 2021 Apr;109:104694 [PMID: 33601141]
  21. Genet Mol Res. 2016 Feb 05;15(1): [PMID: 26909951]
  22. J Toxicol Sci. 2011 Oct;36(5):645-51 [PMID: 22008539]
  23. Molecules. 2011 Sep 16;16(9):8020-32 [PMID: 21926947]
  24. Neurochem Res. 2022 Jun;47(6):1574-1587 [PMID: 35266084]
  25. Acta Pharmacol Sin. 2002 Dec;23(12):1075-85 [PMID: 12466044]
  26. J Pharm Biomed Anal. 2018 May 30;154:302-311 [PMID: 29567573]
  27. Biomed Pharmacother. 2018 Jan;97:624-632 [PMID: 29101806]
  28. J Gastroenterol Hepatol. 2007 Jan;22(1):99-111 [PMID: 17201889]
  29. J Biomed Sci. 2022 Oct 22;29(1):85 [PMID: 36273169]
  30. Mol Med Rep. 2021 Apr;23(4): [PMID: 33649825]
  31. Mol Biol Rep. 2019 Dec;46(6):5867-5874 [PMID: 31407245]
  32. Curr Clin Microbiol Rep. 2015 Sep;2(3):115-124 [PMID: 26509109]
  33. Antibiotics (Basel). 2022 Oct 02;11(10): [PMID: 36290004]
  34. Biochem Pharmacol. 2016 Feb 1;101:87-99 [PMID: 26640276]
  35. Acta Pharmacol Sin. 2001 Nov;22(11):971-5 [PMID: 11749785]
  36. Phytother Res. 2004 Apr;18(4):306-9 [PMID: 15162366]
  37. World J Gastroenterol. 2007 Feb 28;13(8):1214-20 [PMID: 17451202]
  38. Front Pharmacol. 2022 Aug 16;13:978600 [PMID: 36052124]
  39. Cancer Lett. 2010 Jan 28;287(2):187-95 [PMID: 19586712]
  40. J Pharm Pharmacol. 2020 Nov;72(11):1491-1512 [PMID: 32696989]
  41. Molecules. 2022 Jun 23;27(13): [PMID: 35807286]
  42. Mol Med Rep. 2016 Jun;13(6):5177-84 [PMID: 27121946]
  43. J Nat Prod. 2003 Jul;66(7):954-7 [PMID: 12880313]
  44. Phytochem Rev. 2020;19(2):449-489 [PMID: 32336965]
  45. Zhongguo Zhong Yao Za Zhi. 2010 Nov;35(21):2882-8 [PMID: 21322952]
  46. Anticancer Res. 2005 May-Jun;25(3B):1953-62 [PMID: 16158930]
  47. Front Chem. 2023 Jan 10;10:1107824 [PMID: 36704617]
  48. Ocul Immunol Inflamm. 1997 Sep;5(3):173-80 [PMID: 9326762]
  49. Medchemcomm. 2018 May 4;9(7):1131-1141 [PMID: 30109000]
  50. Heliyon. 2022 Aug 13;8(8):e10201 [PMID: 36046534]
  51. Int Arch Allergy Appl Immunol. 1988;85(4):410-5 [PMID: 2833446]
  52. J Asian Nat Prod Res. 2013 Sep;15(9):993-1002 [PMID: 23944846]
  53. Eur J Pharmacol. 2004 Dec 15;506(2):101-5 [PMID: 15588729]
  54. Life Sci. 2003 May 30;73(2):243-52 [PMID: 12738038]
  55. Exp Ther Med. 2018 Sep;16(3):2670-2676 [PMID: 30186500]
  56. Front Pharmacol. 2021 Nov 22;12:739220 [PMID: 34880752]
  57. Oncol Lett. 2018 Nov;16(5):6808-6814 [PMID: 30405825]
  58. Phytomedicine. 2014 Jul-Aug;21(8-9):1110-9 [PMID: 24856768]
  59. Phytomedicine. 2016 Dec 15;23(14):1821-1829 [PMID: 27912885]
  60. Parkinsons Dis. 2015;2015:931058 [PMID: 26664824]
  61. BMC Infect Dis. 2015 Mar 25;15:153 [PMID: 25887373]
  62. J Med Microbiol. 2015 Sep;64(9):1008-1020 [PMID: 26296880]
  63. Cell Chem Biol. 2021 Aug 19;28(8):1119-1131.e27 [PMID: 33626324]
  64. In Vivo. 2010 May-Jun;24(3):265-70 [PMID: 20554997]
  65. Neural Regen Res. 2016 Mar;11(3):454-9 [PMID: 27127485]
  66. Anticancer Agents Med Chem. 2019;19(12):1454-1462 [PMID: 30961510]
  67. Pharmacol Res. 2024 Sep;207:107314 [PMID: 39059614]
  68. Br J Pharmacol. 1999 Dec;128(7):1593-601 [PMID: 10602341]
  69. Phytochemistry. 2016 May;125:5-13 [PMID: 26899361]
  70. J Med Chem. 2023 Mar 23;66(6):4086-4105 [PMID: 36892076]
  71. J Pharm Pharmacol. 2004 Jan;56(1):115-22 [PMID: 14980008]
  72. Eur J Pharmacol. 2008 Jul 28;589(1-3):288-98 [PMID: 18565510]
  73. Adv Drug Deliv Rev. 2013 Oct;65(10):1370-85 [PMID: 23099277]
  74. Chem Rev. 2019 Mar 27;119(6):4180-4220 [PMID: 30730700]
  75. Bioorg Chem. 2024 Feb;143:107069 [PMID: 38160477]
  76. Clin Exp Pharmacol Physiol. 1996 Aug;23(8):751-3 [PMID: 8886503]
  77. J Ethnopharmacol. 2014;151(1):729-32 [PMID: 24269338]
  78. Foodborne Pathog Dis. 2012 Aug;9(8):686-91 [PMID: 22845553]
  79. Molecules. 2020 Apr 09;25(7): [PMID: 32283819]
  80. Fitoterapia. 2015 Jun;103:231-41 [PMID: 25917513]
  81. J Am Chem Soc. 1976 Mar 31;98(7):1947-52 [PMID: 1254853]
  82. Pharmacol Res Perspect. 2020 Oct;8(5):e00653 [PMID: 32930523]
  83. Biomed Pharmacother. 2022 Apr;148:112727 [PMID: 35219119]
  84. J Asian Nat Prod Res. 2016 Oct;18(10):966-75 [PMID: 27244089]
  85. Med Res Rev. 2021 Jan;41(1):525-555 [PMID: 33047304]
  86. Eur J Med Chem. 2017 Feb 15;127:554-566 [PMID: 28109948]
  87. Biol Pharm Bull. 1999 Apr;22(4):360-5 [PMID: 10328554]
  88. Biosci Rep. 2019 May 14;39(5): [PMID: 31040202]
  89. Acta Pharmacol Sin. 2002 Dec;23(12):1057-68 [PMID: 12466042]
  90. Lancet Infect Dis. 2017 Dec;17(12):e383-e392 [PMID: 28774698]
  91. Int Immunopharmacol. 2024 Sep 10;138:112563 [PMID: 38943976]
  92. Int Immunopharmacol. 2016 Jul;36:263-270 [PMID: 27179306]
  93. Drug Deliv. 2019 Dec;26(1):199-207 [PMID: 30835586]
  94. PeerJ. 2020 May 07;8:e9042 [PMID: 32419986]
  95. Malar J. 2013 Apr 02;12:117 [PMID: 23547773]
  96. Acta Pharmacol Sin. 2002 Dec;23(12):1086-92 [PMID: 12466045]
  97. Biomed Pharmacother. 2016 Dec;84:925-930 [PMID: 27764754]
  98. Eur J Med Chem. 2018 Jan 1;143:1968-1980 [PMID: 29133049]
  99. J Integr Med. 2021 Jul;19(4):311-316 [PMID: 33583757]
  100. Chem Res Toxicol. 2011 Dec 19;24(12):2142-52 [PMID: 21992520]
  101. Immunopharmacol Immunotoxicol. 2021 Dec;43(6):749-757 [PMID: 34591732]
  102. Brain Behav. 2022 Dec;12(12):e2786 [PMID: 36377337]
  103. Inflammation. 2024 Aug;47(4):1109-1126 [PMID: 38265677]
  104. Eur J Pharmacol. 2024 Apr 15;969:176459 [PMID: 38438063]
  105. Tumour Biol. 2014 Mar;35(3):2205-10 [PMID: 24185966]
  106. Molecules. 2011 Nov 25;16(12):9819-26 [PMID: 22117171]
  107. J Nat Med. 2008 Jan;62(1):117-21 [PMID: 18404356]
  108. Toxicol Appl Pharmacol. 1993 Sep;122(1):70-6 [PMID: 8104360]
  109. Medicina (Kaunas). 2022 Sep 01;58(9): [PMID: 36143871]
  110. Front Pharmacol. 2020 Apr 30;11:548 [PMID: 32425789]
  111. Phytomedicine. 2018 Jul 15;46:21-31 [PMID: 30097119]
  112. J Vet Sci. 2009 Mar;10(1):23-8 [PMID: 19255520]
  113. J Asian Nat Prod Res. 2018 Nov;20(11):1064-1074 [PMID: 29852780]
  114. Int J Cancer. 2000 Oct 15;88(2):274-80 [PMID: 11004680]
  115. Pharmacol Ther. 2021 Jan;217:107659 [PMID: 32800789]
  116. Phytopathology. 2021 Jul;111(7):1152-1157 [PMID: 33289404]
  117. Cancer Res. 2004 Dec 15;64(24):9086-92 [PMID: 15604277]
  118. Br J Pharmacol. 2004 Dec;143(7):919-27 [PMID: 15504755]
  119. Chin J Nat Med. 2015 Nov;13(11):831-841 [PMID: 26614458]

MeSH Term

Benzylisoquinolines
Humans
Neoplasms
Antineoplastic Agents
Structure-Activity Relationship
Anti-Bacterial Agents
Molecular Structure
Animals

Chemicals

Benzylisoquinolines
tetrandrine
Antineoplastic Agents
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0TetstructuralmodificationcanactivityTetrandrineenhancepharmacologicalsolubilityderivativestherapeuticpotentialpositionantitumorstructureanalogsanticancerleadactivitiesoptimizationbisbenzylisoquinolinealkaloidnoteddiverseeffectsfaceslimitationsclinicaluseduetoxicitypoorlowbioavailabilityResearchersworkingaddressissuesdevelopinggreaterGenerallykeymodificationsinclude:1introducingaromaticheterocyclehydrophobicalkyneunit-52addingamidesulfonamideelectron-withdrawinggroup-143changingquaternaryammoniumsaltaltergreatlyboostantibacterial4-12-methoxybenzylmotifmetabolicstabilitythuschange5simplificationmayresultidentificationcompoundsnovelmechanismsactionreviewsystematicallysummarizesstrategiesevaluatesbiologicalaimingguidefacilitatediscoveryimprovedefficacyfuturedirectionpossibilityalsoconsideredInsightsexploringsimplified

Similar Articles

Cited By