A neuromorphic event data interpretation approach with hardware reservoir.

Hanrui Li, Dayanand Kumar, Nazek El-Atab
Author Information
  1. Hanrui Li: SAMA Labs, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  2. Dayanand Kumar: SAMA Labs, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  3. Nazek El-Atab: SAMA Labs, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Abstract

Event cameras have shown unprecedented success in various computer vision applications due to their unique ability to capture dynamic scenes with high temporal resolution and low latency. However, many existing approaches for event data representation are typically algorithm-based, limiting their utilization and hardware deployment. This study explores a hardware event representation approach for event data utilizing a reservoir encoder implemented with analog memristor. The inherent stochastic and non-linear characteristics of the memristors enable the effective and low-cost feature extraction of temporal information from event streams as a reservoir encoder. We propose a simplified memristor model and memristor-based reservoir circuit specifically for processing dynamic visual information and extracting feature in event data. Experimental results with four event datasets demonstrate that our approach achieves superior accuracy over other methods, highlighting the potential of memristor-based event processing system.

Keywords

References

  1. Adv Mater. 2023 Jul;35(28):e2300446 [PMID: 37192130]
  2. Front Neurosci. 2017 May 30;11:309 [PMID: 28611582]
  3. Sensors (Basel). 2022 Feb 05;22(3): [PMID: 35161946]
  4. Nat Commun. 2023 Jan 28;14(1):468 [PMID: 36709349]
  5. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  6. Front Neurosci. 2013 Nov 21;7:223 [PMID: 24311999]
  7. Front Neurorobot. 2018 Feb 19;12:4 [PMID: 29515386]
  8. Front Neurosci. 2015 Nov 16;9:437 [PMID: 26635513]
  9. Nanoscale. 2022 Jan 6;14(2):289-298 [PMID: 34932057]
  10. Nano Lett. 2010 Apr 14;10(4):1297-301 [PMID: 20192230]
  11. Sci Adv. 2021 May 14;7(20): [PMID: 33990331]
  12. Nat Commun. 2024 Mar 6;15(1):2056 [PMID: 38448438]
  13. Nat Commun. 2021 Jan 18;12(1):408 [PMID: 33462233]
  14. IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):154-180 [PMID: 32750812]

Word Cloud

Created with Highcharts 10.0.0eventreservoirdatarepresentationhardwareapproachmemristordynamictemporalencoderfeatureinformationmemristor-basedprocessingneuromorphiccomputingEventcamerasshownunprecedentedsuccessvariouscomputervisionapplicationsdueuniqueabilitycapturesceneshighresolutionlowlatencyHowevermanyexistingapproachestypicallyalgorithm-basedlimitingutilizationdeploymentstudyexploresutilizingimplementedanaloginherentstochasticnon-linearcharacteristicsmemristorsenableeffectivelow-costextractionstreamsproposesimplifiedmodelcircuitspecificallyvisualextractingExperimentalresultsfourdatasetsdemonstrateachievessuperioraccuracymethodshighlightingpotentialsysteminterpretationSNN

Similar Articles

Cited By

No available data.