Resveratrol enhances the tolerance of to potassium deficiency stress.

Zhijuan Sun, Tianchao Wang, Jianyu Li, Xiaodong Zheng, Hongjuan Ge, Guangli Sha, Changqing Ma, Qiang Zhao, Caihong Wang, Yike Tian
Author Information
  1. Zhijuan Sun: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  2. Tianchao Wang: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  3. Jianyu Li: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  4. Xiaodong Zheng: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  5. Hongjuan Ge: Fruit Tree and Tea Research Institute, Qingdao Academy of Agricultural Sciences, Qingdao, China.
  6. Guangli Sha: Fruit Tree and Tea Research Institute, Qingdao Academy of Agricultural Sciences, Qingdao, China.
  7. Changqing Ma: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  8. Qiang Zhao: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  9. Caihong Wang: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  10. Yike Tian: College of Horticulture, Qingdao Agricultural University, Qingdao, China.

Abstract

Potassium (K) deficiency in plants can lead to metabolic disorders and growth retardation. Currently, nearly 50% of the arable land in China is experiencing a K resource deficit, significantly hindering the development of the apple industry. Resveratrol (Res), a phytoalexin, has been extensively reported to enhance plant resistance against various abiotic stresses. However, there have been no reports on the response of Res to K deficiency stress in apples. This study aims to investigate the effect of exogenous Res on the K deficiency tolerance of . The results demonstrated that applying 50 ��M of exogenous Res could enhance the tolerance of to K deficiency stress. Compared to non-Res treatments, external application of Res alleviated leaf chlorosis and improved root growth in apple seedlings. Additionally, it increased antioxidant enzyme activity, thereby reducing the production of reactive oxygen species induced by K deficiency stress. Res also regulated proline and soluble sugar content to maintain osmotic balance. Moreover, Res helped maintain the balance of mineral element contents in apple seedlings and the normal K: Na ratio by enhancing the influx of K. Furthermore, exogenous Res regulated the expression of related kinase genes, promoting Ca signal transduction in response to K deficiency stress and inducing the expression of K transport genes to enhance K absorption, thus supporting normal plant growth. In conclusion, this study provides a theoretical basis for the application of exogenous Res to alleviate K deficiency stress in apples.

Keywords

References

  1. Plants (Basel). 2021 Jan 04;10(1): [PMID: 33406721]
  2. Plant Physiol. 2019 May;180(1):593-604 [PMID: 30837346]
  3. New Phytol. 2018 Jan;217(2):523-539 [PMID: 29205383]
  4. Plant Sci. 2020 Nov;300:110628 [PMID: 33180708]
  5. BMC Genomics. 2024 Jan 15;25(1):61 [PMID: 38225545]
  6. Physiol Plant. 2018 Nov;164(3):279-289 [PMID: 29527680]
  7. Front Plant Sci. 2022 Nov 24;13:1032646 [PMID: 36507405]
  8. J Pineal Res. 2007 Jan;42(1):28-42 [PMID: 17198536]
  9. Front Plant Sci. 2017 Apr 05;8:483 [PMID: 28424730]
  10. J Agric Food Chem. 2003 Feb 12;51(4):1077-80 [PMID: 12568575]
  11. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7309-14 [PMID: 25997445]
  12. BMC Plant Biol. 2021 Sep 23;21(1):433 [PMID: 34556040]
  13. Plant Cell Environ. 2017 May;40(5):658-671 [PMID: 27987209]
  14. Int J Mol Sci. 2013 Apr 02;14(4):7370-90 [PMID: 23549270]
  15. Front Plant Sci. 2022 Jul 22;13:901782 [PMID: 35937337]
  16. J Exp Bot. 2006;57(5):1025-43 [PMID: 16510517]
  17. Annu Rev Plant Biol. 2018 Apr 29;69:209-236 [PMID: 29489394]
  18. J Integr Plant Biol. 2021 Jan;63(1):34-52 [PMID: 33325114]
  19. Plant Physiol Biochem. 2017 Sep;118:609-617 [PMID: 28800521]
  20. J Pineal Res. 2012 Oct;53(3):298-306 [PMID: 22507106]
  21. Int J Mol Sci. 2018 Nov 03;19(11): [PMID: 30400321]
  22. Plant Physiol Biochem. 2021 Jul;164:237-246 [PMID: 34015689]
  23. New Phytol. 2017 Jan;213(2):739-750 [PMID: 27579668]
  24. Plant J. 2024 Jul;119(1):197-217 [PMID: 38565306]
  25. Plant Cell Rep. 2022 Sep;41(9):1863-1874 [PMID: 35781542]
  26. Plant Physiol Biochem. 2014 May;78:1-9 [PMID: 24602773]
  27. Physiol Plant. 2008 Aug;133(4):670-81 [PMID: 18331406]
  28. Front Plant Sci. 2021 May 12;12:650485 [PMID: 34054896]
  29. PLoS Genet. 2016 Sep 29;12(9):e1006255 [PMID: 27684709]
  30. Biochem Biophys Res Commun. 2003 Oct 3;309(4):1017-26 [PMID: 13679076]
  31. BMC Plant Biol. 2020 Sep 21;20(1):434 [PMID: 32957907]
  32. Plant Biotechnol J. 2023 Nov;21(11):2273-2290 [PMID: 37465981]
  33. Plant Physiol. 2023 Aug 31;193(1):821-839 [PMID: 37311207]
  34. Nat Plants. 2020 Apr;6(4):384-393 [PMID: 32231253]
  35. Mol Plant. 2013 Jul;6(4):1274-1289 [PMID: 23253603]
  36. J Integr Plant Biol. 2024 Mar;66(3):394-423 [PMID: 38329193]
  37. Front Plant Sci. 2023 Feb 13;14:1112264 [PMID: 36860901]
  38. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  39. Front Plant Sci. 2020 Feb 06;11:38 [PMID: 32117377]
  40. Cell. 2006 Jun 30;125(7):1347-60 [PMID: 16814720]
  41. Oxid Med Cell Longev. 2010 Mar-Apr;3(2):86-100 [PMID: 20716933]
  42. New Phytol. 2018 Feb;217(3):1086-1098 [PMID: 29165808]
  43. Plant Biotechnol J. 2019 Dec;17(12):2341-2355 [PMID: 31077628]
  44. Plant Physiol Biochem. 2021 Feb;159:113-122 [PMID: 33359960]
  45. Front Plant Sci. 2016 Mar 31;7:347 [PMID: 27066020]
  46. Crit Rev Biotechnol. 2010 Sep;30(3):161-75 [PMID: 20214435]
  47. Nat Rev Mol Cell Biol. 2022 Oct;23(10):663-679 [PMID: 35760900]
  48. J Sci Food Agric. 2020 Mar 15;100(4):1392-1404 [PMID: 31756276]
  49. Plant Physiol Biochem. 2022 Dec 1;192:243-251 [PMID: 36272191]
  50. Plant Physiol. 2015 Dec;169(4):2863-73 [PMID: 26474642]
  51. Biofactors. 2018 Jan;44(1):36-49 [PMID: 29193412]
  52. Plant Cell Environ. 2010 Apr;33(4):453-67 [PMID: 19712065]
  53. Plants (Basel). 2024 Mar 15;13(6): [PMID: 38592853]

Word Cloud

Created with Highcharts 10.0.0KdeficiencyResstressexogenousgrowthappleenhancetolerancebalanceResveratrolplantresponseapplesstudyapplicationseedlingsregulatedmaintainnormalexpressiongenesPotassiumplantscanleadmetabolicdisordersretardationCurrentlynearly50%arablelandChinaexperiencingresourcedeficitsignificantlyhinderingdevelopmentindustryphytoalexinextensivelyreportedresistancevariousabioticstressesHoweverreportsaimsinvestigateeffectresultsdemonstratedapplying50��MComparednon-RestreatmentsexternalalleviatedleafchlorosisimprovedrootAdditionallyincreasedantioxidantenzymeactivitytherebyreducingproductionreactiveoxygenspeciesinducedalsoprolinesolublesugarcontentosmoticMoreoverhelpedmineralelementcontentsK:NaratioenhancinginfluxFurthermorerelatedkinasepromotingCasignaltransductioninducingtransportabsorptionthussupportingconclusionprovidestheoreticalbasisalleviateenhancespotassiumMalushupehensisionoxidativedamageresveratrol

Similar Articles

Cited By