How Rice Responds to Temperature Changes and Defeats Heat Stress.

Yuan-Hang Xing, Hongyu Lu, Xinfeng Zhu, Yufei Deng, Yujun Xie, Qiuhong Luo, Jinsheng Yu
Author Information
  1. Yuan-Hang Xing: The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
  2. Hongyu Lu: The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
  3. Xinfeng Zhu: The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
  4. Yufei Deng: College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China.
  5. Yujun Xie: The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
  6. Qiuhong Luo: The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China. lqh@zafu.edu.cn.
  7. Jinsheng Yu: The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China. jinshyu@zafu.edu.cn.

Abstract

With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.

Keywords

References

  1. Genome. 2021 Nov;64(11):969-984 [PMID: 33901411]
  2. Sci Rep. 2018 Mar 6;8(1):4072 [PMID: 29511223]
  3. Physiol Plant. 2022 Jan;174(1):e13584 [PMID: 34625965]
  4. Cell. 2009 Feb 20;136(4):642-55 [PMID: 19239886]
  5. PLoS Genet. 2015 Feb 17;11(2):e1004982 [PMID: 25689273]
  6. Plant Commun. 2023 Nov 13;4(6):100629 [PMID: 37226443]
  7. Science. 2022 Jun 17;376(6599):1293-1300 [PMID: 35709289]
  8. Front Plant Sci. 2021 Jul 23;12:702892 [PMID: 34367222]
  9. Plant Cell Environ. 2022 Jul;45(7):2126-2144 [PMID: 35394666]
  10. PLoS Genet. 2016 Feb 05;12(2):e1005844 [PMID: 26848586]
  11. Sci Bull (Beijing). 2024 Jan 15;69(1):59-71 [PMID: 38044192]
  12. Bot Stud. 2019 Sep 23;60(1):23 [PMID: 31549254]
  13. Plant Biotechnol J. 2014 Jan;12(1):28-37 [PMID: 24034357]
  14. Plant Biotechnol J. 2020 Jan;18(1):57-67 [PMID: 31124256]
  15. Cell Res. 2022 Oct;32(10):931-945 [PMID: 36068348]
  16. Plant Physiol. 2023 May 31;192(2):1168-1182 [PMID: 36960567]
  17. BMC Plant Biol. 2021 Jun 7;21(1):263 [PMID: 34098898]
  18. Plant Biotechnol J. 2021 Aug;19(8):1486-1488 [PMID: 33991411]
  19. J Hered. 2013 Mar;104(2):287-94 [PMID: 23258571]
  20. J Plant Physiol. 2017 Sep;216:52-57 [PMID: 28575747]
  21. Plant J. 2020 Jul;103(2):604-616 [PMID: 32215974]
  22. Nat Biotechnol. 2015 Sep;33(9):996-1003 [PMID: 26280413]
  23. Front Genet. 2022 Sep 15;13:983525 [PMID: 36186421]
  24. Plant J. 2009 Oct;60(1):10-21 [PMID: 19500308]
  25. Biochim Biophys Acta. 2014 Apr;1844(4):818-28 [PMID: 24566471]
  26. Plant Physiol. 2014 Apr;164(4):2045-53 [PMID: 24520156]
  27. Plant Cell Environ. 2023 May;46(5):1453-1471 [PMID: 36691352]
  28. BMC Genet. 2013 Sep 18;14:85 [PMID: 24047500]
  29. J Exp Bot. 2020 Feb 19;71(4):1294-1305 [PMID: 31701134]
  30. Physiol Plant. 2021 Dec;173(4):2055-2067 [PMID: 34498290]
  31. Rice (N Y). 2024 Feb 19;17(1):16 [PMID: 38374238]
  32. Plant Mol Biol. 2023 Jul;112(4-5):225-243 [PMID: 37166615]
  33. Front Genet. 2022 Feb 09;13:832153 [PMID: 35222548]
  34. Annu Rev Plant Biol. 2019 Apr 29;70:321-346 [PMID: 30786235]
  35. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  36. Front Plant Sci. 2022 Dec 20;13:1092630 [PMID: 36605966]
  37. Plant Biotechnol J. 2023 Aug;21(8):1659-1670 [PMID: 37205779]
  38. J Exp Bot. 2016 Mar;67(5):1297-310 [PMID: 26709310]
  39. J Exp Bot. 2020 Jun 26;71(13):3780-3802 [PMID: 31970395]
  40. Plant Biotechnol J. 2023 Dec;21(12):2525-2545 [PMID: 37578160]
  41. New Phytol. 2019 Jan;221(1):371-384 [PMID: 30043395]
  42. Plant Physiol. 2024 Oct 1;196(2):1014-1028 [PMID: 38976569]
  43. Plant Physiol Biochem. 2009 Sep;47(9):785-95 [PMID: 19539489]
  44. Nat Commun. 2023 Jul 24;14(1):4441 [PMID: 37488129]
  45. Plant Biotechnol J. 2020 May;18(5):1317-1329 [PMID: 31733092]
  46. Planta. 2023 Mar 30;257(5):91 [PMID: 36995438]
  47. Nat Plants. 2020 May;6(5):570-580 [PMID: 32313138]
  48. Front Plant Sci. 2023 Mar 27;14:1113838 [PMID: 37051081]
  49. Plant Mol Biol. 2005 Sep;59(1):75-84 [PMID: 16217603]
  50. Plant Sci. 2018 Feb;267:168-179 [PMID: 29362095]
  51. Mol Plant. 2022 Jan 3;15(1):9-26 [PMID: 34883279]
  52. Mol Plant. 2014 Mar;7(3):541-53 [PMID: 24121292]
  53. Antioxidants (Basel). 2024 May 11;13(5): [PMID: 38790697]
  54. Dev Cell. 2020 May 4;53(3):272-286.e7 [PMID: 32275888]
  55. Breed Sci. 2018 Jun;68(3):336-342 [PMID: 30100800]
  56. Front Plant Sci. 2023 Jan 09;13:1102938 [PMID: 36699845]
  57. Plant Cell Environ. 2021 Jul;44(7):2066-2089 [PMID: 33538010]
  58. Nat Commun. 2024 Jul 13;15(1):5877 [PMID: 38997294]
  59. PLoS Genet. 2016 Jul 01;12(7):e1006152 [PMID: 27367609]
  60. Plant Physiol. 2023 Aug 3;192(4):3106-3119 [PMID: 37099454]
  61. Trends Biochem Sci. 2023 Sep;48(9):788-800 [PMID: 37393166]
  62. Plant Physiol. 2023 Mar 17;191(3):1684-1701 [PMID: 36517254]
  63. Plant Cell. 2011 Dec;23(12):4185-207 [PMID: 22158467]
  64. PLoS One. 2013 Aug 22;8(8):e72157 [PMID: 23991056]
  65. Plant Biotechnol J. 2018 Jan;16(1):18-26 [PMID: 28429576]
  66. Plants (Basel). 2023 Jun 22;12(13): [PMID: 37446969]
  67. PLoS One. 2012;7(12):e52030 [PMID: 23251677]
  68. Plant Cell Environ. 2015 Sep;38(9):1881-95 [PMID: 24995670]
  69. Plant Physiol. 2023 Jul 3;192(3):2301-2317 [PMID: 36861636]
  70. Plant Physiol. 2020 Aug;183(4):1794-1808 [PMID: 32527735]
  71. J Exp Bot. 2015 Nov;66(21):6803-17 [PMID: 26261267]
  72. Rice (N Y). 2021 Feb 6;14(1):16 [PMID: 33547986]
  73. Plant Mol Biol. 2003 Mar;51(5):677-86 [PMID: 12678556]
  74. Rice (N Y). 2022 Jun 28;15(1):32 [PMID: 35763153]
  75. New Phytol. 2022 Jan;233(1):344-359 [PMID: 34610140]
  76. Front Plant Sci. 2015 Dec 08;6:1092 [PMID: 26697045]
  77. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9970-5 [PMID: 18632569]
  78. Genes (Basel). 2019 Jan 17;10(1): [PMID: 30658457]
  79. Front Genet. 2021 Jan 22;11:621871 [PMID: 33552136]
  80. Plant J. 2024 Apr;118(2):506-518 [PMID: 38169508]
  81. Mol Plant. 2019 Aug 5;12(8):1123-1142 [PMID: 31075443]
  82. New Phytol. 2021 Oct;232(2):655-672 [PMID: 34260064]
  83. Nat Genet. 2012 Jan 15;44(2):217-20 [PMID: 22246502]
  84. Breed Sci. 2014 Dec;64(4):273-81 [PMID: 25914581]
  85. Plant Cell. 2023 Dec 21;36(1):65-84 [PMID: 37738656]
  86. Mol Biol Rep. 2022 Jan;49(1):617-628 [PMID: 34669126]
  87. Plant Biotechnol J. 2017 Jun;15(6):713-717 [PMID: 27875019]
  88. Plant Biotechnol J. 2022 Aug;20(8):1591-1605 [PMID: 35514030]
  89. Plant Biotechnol J. 2022 Aug;20(8):1441-1443 [PMID: 35634733]
  90. Cell Stress Chaperones. 2012 Mar;17(2):243-54 [PMID: 22147560]
  91. Plants (Basel). 2023 Dec 04;12(23): [PMID: 38068705]
  92. Int J Mol Sci. 2020 Aug 15;21(16): [PMID: 32824161]
  93. Nat Commun. 2020 Oct 28;11(1):5441 [PMID: 33116138]
  94. Annu Rev Plant Biol. 2023 May 22;74:341-366 [PMID: 36854477]
  95. Trends Plant Sci. 2021 Dec;26(12):1248-1257 [PMID: 34404586]
  96. BMC Plant Biol. 2023 Dec 6;23(1):619 [PMID: 38057725]
  97. J Exp Bot. 2024 Mar 27;75(7):1823-1833 [PMID: 38006251]
  98. J Exp Bot. 2015 Sep;66(19):5853-66 [PMID: 26085678]
  99. Front Plant Sci. 2017 Mar 17;8:371 [PMID: 28367158]
  100. Physiol Plant. 2024 May-Jun;176(3):e14369 [PMID: 38828612]
  101. Plant Cell Environ. 2021 Jul;44(7):2018-2033 [PMID: 33314270]
  102. J Exp Bot. 2023 May 19;74(10):3003-3018 [PMID: 36881783]
  103. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12456-61 [PMID: 25114224]
  104. J Exp Bot. 2021 Apr 2;72(8):2947-2964 [PMID: 33476364]
  105. Mol Plant. 2022 Jun 6;15(6):956-972 [PMID: 35418344]
  106. Physiol Plant. 2024 Mar-Apr;176(2):e14305 [PMID: 38659134]
  107. Front Plant Sci. 2023 Jan 13;13:1083971 [PMID: 36756226]
  108. Genetics. 2001 Apr;157(4):1819-29 [PMID: 11290733]
  109. Plant Cell Rep. 2024 Jan 2;43(1):27 [PMID: 38163826]
  110. Rice (N Y). 2018 Mar 12;11(1):14 [PMID: 29532187]
  111. Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):557-72 [PMID: 17715053]
  112. Mol Cell. 2007 Oct 26;28(2):328-36 [PMID: 17964270]
  113. Plant Physiol. 2024 Sep 2;196(1):164-180 [PMID: 38820200]
  114. Plant Biotechnol J. 2024 Jul;22(7):2020-2032 [PMID: 38421616]
  115. Nat Plants. 2022 Jan;8(1):53-67 [PMID: 34992240]
  116. New Phytol. 2020 Jun;226(6):1567-1572 [PMID: 31943230]
  117. Theor Appl Genet. 2015 Aug;128(8):1507-17 [PMID: 25957114]
  118. Plant Physiol. 2016 Jan;170(1):429-43 [PMID: 26564152]
  119. Int J Mol Sci. 2022 Jan 18;23(3): [PMID: 35162955]
  120. Plant Sci. 2023 May;330:111634 [PMID: 36775071]
  121. J Exp Bot. 2013 Jul;64(10):2899-914 [PMID: 23698632]
  122. Front Plant Sci. 2023 Feb 22;14:1121852 [PMID: 36909437]
  123. Plant Cell Environ. 2020 Aug;43(8):1879-1896 [PMID: 32335936]
  124. Int J Mol Sci. 2023 Mar 26;24(7): [PMID: 37047228]
  125. Front Plant Sci. 2020 May 08;11:519 [PMID: 32457773]
  126. Mol Plant. 2023 Oct 2;16(10):1612-1634 [PMID: 37740489]
  127. Biochem Biophys Res Commun. 2016 Oct 14;479(2):260-265 [PMID: 27639642]
  128. Front Plant Sci. 2023 Jan 31;14:1068296 [PMID: 36798712]
  129. Plant Mol Biol. 2015 Jan;87(1-2):31-45 [PMID: 25326264]
  130. Cell Stress Chaperones. 2016 Mar;21(2):271-83 [PMID: 26546418]
  131. Plant Cell Environ. 2024 Sep 11;: [PMID: 39257305]
  132. Nat Rev Genet. 2023 Dec;24(12):816-833 [PMID: 37380761]
  133. New Phytol. 2024 Jun;242(6):2635-2651 [PMID: 38634187]
  134. Int J Mol Sci. 2021 Jul 02;22(13): [PMID: 34281241]
  135. Front Plant Sci. 2020 Apr 02;11:375 [PMID: 32300353]
  136. aBIOTECH. 2022 Jan 24;3(1):65-77 [PMID: 36311539]
  137. Nat Commun. 2014 Oct 31;5:5302 [PMID: 25358745]
  138. Nature. 2003 Aug 21;424(6951):901-8 [PMID: 12931178]
  139. Plant Physiol Biochem. 2023 May;198:107683 [PMID: 37062127]
  140. Rice (N Y). 2020 Aug 26;13(1):61 [PMID: 32845426]
  141. Plant Sci. 2019 Dec;289:110273 [PMID: 31623772]
  142. J Exp Bot. 2015 Mar;66(5):1227-36 [PMID: 25534925]
  143. Plant J. 2024 Jul;119(2):861-878 [PMID: 38761097]
  144. Plant Cell Environ. 2021 Jul;44(7):2308-2320 [PMID: 33745135]
  145. Nat Genet. 2015 Jul;47(7):827-33 [PMID: 25985140]
  146. Int J Mol Sci. 2023 Apr 12;24(8): [PMID: 37108303]
  147. Plant Sci. 2015 Apr;233:22-31 [PMID: 25711810]
  148. Nat Rev Mol Cell Biol. 2022 Oct;23(10):663-679 [PMID: 35760900]
  149. New Phytol. 2024 Sep;243(5):1742-1757 [PMID: 38934055]
  150. Rice (N Y). 2016 Dec;9(1):13 [PMID: 27000876]
  151. Plant Sci. 2014 Feb;215-216:48-58 [PMID: 24388514]
  152. Plant Biol (Stuttg). 2015 Mar;17(2):419-29 [PMID: 25255693]
  153. Plant J. 2020 Feb;101(4):940-950 [PMID: 31596523]
  154. J Integr Plant Biol. 2023 Dec;65(12):2541-2551 [PMID: 37728044]
  155. Front Plant Sci. 2016 Feb 09;7:114 [PMID: 26904076]
  156. J Exp Bot. 2019 Oct 15;70(19):5051-5069 [PMID: 31145793]
  157. Rice (N Y). 2021 Jun 12;14(1):53 [PMID: 34117939]
  158. Int J Mol Sci. 2022 Sep 13;23(18): [PMID: 36142525]
  159. Plant Biotechnol J. 2023 Apr;21(4):819-838 [PMID: 36597711]
  160. Rice (N Y). 2018 Jun 28;11(1):38 [PMID: 29951703]

Grants

  1. 2024LFR025/Scientific Research Foundation for the Introduction of Talent by Zhejiang A&F University
  2. 32171931/National Natural Science Foundation of China
  3. 160102/State Key Laboratory of Rice Biology

Word Cloud

Created with Highcharts 10.0.0heatstresstemperatureRicericemolecularcropshighgenetictoleranceintensificationgreenhouseeffectseriesnaturalphenomenaglobalwarminggraduallyrecognizedambientincreasesextentcausesplantsagriculturalproductionwillinevitablyaffectedThereforeseveralissuesassociatedurgentlyneedsolvedonemomentousfoodhumanswidelyplantedtropicalsubtropicalmonsoonregionspronesummerleadingdecreaseyieldqualityUnderstandingcantolerateeffectsparticularlyvitalarticlereviewsrespondrisingintegratingregulatorypathwaysintroducephysiologicalmechanismsperspectivebiologyadditiongenomeselectionengineeringemphasizedprovidetheoreticalbasissustainabilitystabilitycropyield-qualitystructurestemperaturespointviewbreedingRespondsTemperatureChangesDefeatsHeatStressHighThermomorphogenesisThermosensingYield-qualitystructure

Similar Articles

Cited By