An algorithmic and software framework to incorporate orientation distribution functions in finite element simulations for biomechanics and biophysics.

Adam Rauff, Michael R Herron, Steve A Maas, Jeffrey A Weiss
Author Information
  1. Adam Rauff: Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
  2. Michael R Herron: Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
  3. Steve A Maas: Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
  4. Jeffrey A Weiss: Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA. Electronic address: jeff.weiss@utah.edu.

Abstract

Biological tissues and biomaterials routinely feature a fibrous microstructure that contributes to physical and mechanical properties while influencing cellular guidance, organization and extracellular matrix (ECM) production. Specialized three-dimensional (3D) imaging techniques can visualize fibrillar structure and orientation, and previously we developed a nonparametric approach to extract orientation distribution functions (ODFs) directly from 3D image data [1]. In this work, we expanded our previous approach to provide a complete algorithmic and software framework to characterize inhomogeneous ODFs in image data and use ODFs to model the physics of materials with the finite element method. We characterized inhomogeneity using image subdomains and specialized interpolation methods, and we developed methods to incorporate ODFs directly into constitutive models. To facilitate its adoption by the biomechanics and biophysics communities, we developed a unified software framework in FEBio Studio (www.febio.org). This included new interpolation methods to spatially map the ODFs onto finite element meshes and an approach to downsample ODFs for efficient numerical calculations. The software provides the option to fit ODFs to parametric distributions, and scalar metrics provide means to assess goodness of fit. We evaluated the utility and accuracy of the algorithms and implementation using representative 3D image datasets. Our results demonstrated that utilizing the true measured ODFs provide a more accurate and spatially resolved representation of fiber ODFs and the resulting predicted mechanical response when compared with parametric approaches to approximating the true ODFs. This research provides a powerful, interactive software framework to extract and represent the inhomogeneous anisotropic characteristics of fibrous tissues directly from image data, and to incorporate them into biomechanics and biophysics simulations using the finite element method. STATEMENT OF SIGNIFICANCE: Biological tissues and biomaterials routinely feature a fibrous microstructure that contributes to physical and mechanical properties while influencing cellular guidance, organization and extracellular matrix (ECM) production. In this study, we developed a complete algorithmic and software framework to characterize inhomogeneous orientation distribution functions (ODFs) directly from biomedical image data and apply the ODFs to model the physics of biological materials. We characterized inhomogeneity using image subdomains and specialized interpolation methods, and we developed methods to incorporate ODFs directly into constitutive models. We developed a unified software framework in FEBio Studio (www.febio.org) to accommodate its adoption by the biomechanics and biophysics communities. The result is a powerful, interactive software framework to extract and represent inhomogeneous, anisotropic characteristics directly from image data, and incorporate them into biomechanics and biophysics simulations.

Keywords

References

  1. Neuroimage. 2004 Nov;23(3):1176-85 [PMID: 15528117]
  2. Phys Biol. 2011 Dec;8(6):066008 [PMID: 22120116]
  3. Bone. 2011 Dec;49(6):1141-51 [PMID: 21893221]
  4. J Biomech. 2009 Jun 19;42(9):1163-76 [PMID: 19464689]
  5. Math Mech Solids. 2011 Sep 14;16(7):706-715 [PMID: 23390357]
  6. J Biomech Eng. 2003 Apr;125(2):280-7 [PMID: 12751291]
  7. Neuroimage. 2007 May 1;35(4):1459-72 [PMID: 17379540]
  8. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17675-80 [PMID: 19805118]
  9. Front Physiol. 2020 Aug 14;11:1026 [PMID: 33013445]
  10. Acta Biomater. 2023 Jun;163:248-258 [PMID: 36243365]
  11. Ann Biomed Eng. 1997 Jul-Aug;25(4):678-89 [PMID: 9236980]
  12. Comput Methods Biomech Biomed Engin. 2016;19(8):883-93 [PMID: 26291492]
  13. Opt Lett. 2006 Aug 1;31(15):2305-7 [PMID: 16832467]
  14. Neuroimage. 2015 May 1;111:192-203 [PMID: 25665963]
  15. J Magn Reson Imaging. 2001 Apr;13(4):534-46 [PMID: 11276097]
  16. Acta Biomater. 2015 Oct;25:304-12 [PMID: 26162584]
  17. J R Soc Interface. 2006 Feb 22;3(6):15-35 [PMID: 16849214]
  18. J R Soc Interface. 2015 May 6;12(106): [PMID: 25878125]
  19. J Biomed Mater Res A. 2009 Feb;88(2):322-31 [PMID: 18286605]
  20. J R Soc Interface. 2012 Dec 26;10(80):20120760 [PMID: 23269845]
  21. Acta Biomater. 2018 Jan;65:76-87 [PMID: 29128533]
  22. Matrix Biol. 2013 Oct-Nov;32(7-8):414-23 [PMID: 23608680]
  23. J Biomech Eng. 2012 Jan;134(1):011005 [PMID: 22482660]
  24. IEEE Trans Med Imaging. 2011 Sep;30(9):1635-48 [PMID: 21478075]
  25. Radiographics. 2006 Oct;26 Suppl 1:S205-23 [PMID: 17050517]
  26. Magn Reson Med. 2004 Dec;52(6):1358-72 [PMID: 15562495]
  27. Opt Express. 2010 Nov 22;18(24):24983-93 [PMID: 21164843]
  28. Biomech Model Mechanobiol. 2016 Feb;15(1):229-44 [PMID: 26001349]
  29. Biophys J. 2016 Oct 18;111(8):1797-1804 [PMID: 27760365]
  30. Nat Commun. 2023 Mar 3;14(1):855 [PMID: 36869036]
  31. J Biomech Eng. 2009 Jun;131(6):061003 [PMID: 19449957]
  32. Opt Express. 2012 Sep 10;20(19):21821-32 [PMID: 23037302]
  33. IEEE Trans Med Imaging. 2022 Feb;41(2):446-455 [PMID: 34559646]
  34. J Biomech Eng. 2012 Sep;134(9):091005 [PMID: 22938372]
  35. J Biomed Opt. 2008 Jul-Aug;13(4):044020 [PMID: 19021348]
  36. Biomaterials. 2017 Feb;116:34-47 [PMID: 27914265]
  37. Neuroimage. 2016 Apr 1;129:185-197 [PMID: 26804781]
  38. Mech Mater. 2014 Aug 1;75:73-83 [PMID: 24926114]
  39. Biomed Opt Express. 2015 Jun 03;6(7):2294-310 [PMID: 26203362]
  40. Med Biol Eng Comput. 2015 Jun;53(6):545-55 [PMID: 25752768]
  41. Front Neuroanat. 2016 Apr 19;10:40 [PMID: 27147981]
  42. Magn Reson Med. 2006 Jul;56(1):104-17 [PMID: 16755539]
  43. Acta Biomater. 2021 Aug;130:343-361 [PMID: 34129955]
  44. Neuroimage. 2011 Jan 15;54(2):1091-101 [PMID: 20832489]
  45. Am J Physiol Heart Circ Physiol. 2022 May 1;322(5):H806-H818 [PMID: 35333118]
  46. Annu Rev Biomed Eng. 2017 Jun 21;19:279-299 [PMID: 28633565]
  47. Med Image Anal. 2009 Apr;13(2):354-61 [PMID: 18948056]
  48. Acta Biomater. 2013 Jan;9(1):4635-44 [PMID: 22902816]
  49. BMC Bioinformatics. 2017 May 26;18(1):280 [PMID: 28549411]
  50. Magn Reson Med. 2007 Sep;58(3):497-510 [PMID: 17763358]

Grants

  1. R01 EB016701/NIBIB NIH HHS
  2. U24 EB029007/NIBIB NIH HHS
  3. F31 HL154781/NHLBI NIH HHS
  4. R01 HL131856/NHLBI NIH HHS
  5. R01 GM083925/NIGMS NIH HHS

MeSH Term

Finite Element Analysis
Algorithms
Software
Biomechanical Phenomena
Biophysics
Humans
Imaging, Three-Dimensional

Word Cloud

Created with Highcharts 10.0.0ODFsimagesoftwareframeworkdevelopeddirectlydataelementmethodsincorporatebiomechanicsbiophysicsorientationdistributioninhomogeneousfiniteusingtissuesfibrousmechanical3DapproachextractfunctionsprovidealgorithmicinterpolationFEBiosimulationsBiologicalbiomaterialsroutinelyfeaturemicrostructurecontributesphysicalpropertiesinfluencingcellularguidanceorganizationextracellularmatrixECMproductioncompletecharacterizemodelphysicsmaterialsmethodcharacterizedinhomogeneitysubdomainsspecializedconstitutivemodelsadoptioncommunitiesunifiedStudiowwwfebioorgspatiallyprovidesfitparametrictruepowerfulinteractiverepresentanisotropiccharacteristicsanalysisSpecializedthree-dimensionalimagingtechniquescanvisualizefibrillarstructurepreviouslynonparametric[1]workexpandedprevioususefacilitateincludednewmapontomeshesdownsampleefficientnumericalcalculationsoptiondistributionsscalarmetricsmeansassessgoodnessevaluatedutilityaccuracyalgorithmsimplementationrepresentativedatasetsresultsdemonstratedutilizingmeasuredaccurateresolvedrepresentationfiberresultingpredictedresponsecomparedapproachesapproximatingresearchSTATEMENTOFSIGNIFICANCE:studybiomedicalapplybiologicalaccommodateresultAnisotropyFiniteImageMultiscalemodelingOrientationfunction

Similar Articles

Cited By

No available data.