Metagenomics analysis of bacterial community structure from wood- and soil-feeding termites: metabolic pathways and functional structures toward the degradation of lignocellulose and recalcitrant compounds.

Rongrong Xie, Blessing Danso, Jianzhong Sun, Rania Al-Tohamy, Maha A Khalil, Michael Schagerl, Sameh S Ali
Author Information
  1. Rongrong Xie: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.
  2. Blessing Danso: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.
  3. Jianzhong Sun: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.
  4. Rania Al-Tohamy: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.
  5. Maha A Khalil: Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
  6. Michael Schagerl: Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
  7. Sameh S Ali: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.

Abstract

Some essential information on gut bacterial profiles and their unique contributions to food digestion in wood-feeding termites (WFT) and soil-feeding termites (SFT) is still inadequate. The feeding type of termites is hypothesized to influence their gut bacterial composition and its functionality in degrading lignocellulose or other organic chemicals. This could potentially provide alternative approaches for the degradation of some recalcitrant environmental chemicals. Therefore, metagenomic analysis can be employed to examine the composition and functional profiles of gut bacterial symbionts in WFT and SFT. Based on the metagenomic analysis of the 16S rRNA gene sequences of gut bacterial symbionts in the WFT, sp., and the SFT, , the findings revealed a total of 26 major bacterial phyla, with 18 phyla commonly represented in both termites, albeit in varying abundances. Spirochaetes dominated the bacterial symbionts in sp. at 55%, followed by Fibrobacters, while Firmicutes dominated the gut bacteria symbionts in at 95%, with Actinobacteria coming in second at 2%. Furthermore, the Shannon and phylogenetic tree diversity indices, as well as the observed operational taxonomic units and Chao 1 richness indices, were all found to be higher in the WFT than in the SFT deduced from the alpha diversity analysis. Based on the principal coordinate analysis, exhibited a significant distance dissimilarity between the gut bacterial symbionts. The results showed that the gut bacterial composition differed significantly between the WFT and SFT. Furthermore, Tax4Fun analysis evaluated bacterial functions, revealing the predominance of carbohydrate metabolism, followed by amino acid metabolism and energy metabolism in both sp. and termites. The results implicated that bacterial symbionts inhabiting the guts of both termites were actively involved in the degradation of lignocellulose and other recalcitrant compounds.

Keywords

References

  1. Trends Ecol Evol. 2016 Jul;31(7):539-549 [PMID: 27039196]
  2. Microbiome. 2022 May 27;10(1):78 [PMID: 35624491]
  3. Adv Biochem Eng Biotechnol. 2015;147:111-35 [PMID: 24817085]
  4. F1000Res. 2015 Aug 18;4:574 [PMID: 26913188]
  5. Nature. 2007 Nov 22;450(7169):560-5 [PMID: 18033299]
  6. BMC Bioinformatics. 2011 Sep 30;12:385 [PMID: 21961884]
  7. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 [PMID: 16332807]
  8. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  9. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  10. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  11. Front Microbiol. 2019 Jul 25;10:1646 [PMID: 31428060]
  12. Microbiome. 2015 Feb 25;3:5 [PMID: 25830022]
  13. Microbiome. 2020 Jun 23;8(1):96 [PMID: 32576253]
  14. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  15. Bioinformatics. 2015 Sep 1;31(17):2882-4 [PMID: 25957349]
  16. PeerJ. 2021 Apr 7;9:e10959 [PMID: 33868801]
  17. FEMS Microbiol Ecol. 2017 Jan;93(1): [PMID: 27798065]
  18. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  19. FEMS Microbiol Rev. 2022 Nov 2;46(6): [PMID: 35790132]
  20. Bioresour Technol. 2021 Oct;338:125521 [PMID: 34273631]
  21. J Hazard Mater. 2023 Feb 5;443(Pt B):130287 [PMID: 36335905]
  22. Springerplus. 2015 Sep 02;4:471 [PMID: 26355944]
  23. ISME J. 2019 Jan;13(1):104-117 [PMID: 30116044]
  24. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  25. Cell Mol Life Sci. 2021 Mar;78(6):2749-2769 [PMID: 33388854]
  26. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  27. PLoS One. 2017 Jul 13;12(7):e0181141 [PMID: 28704553]
  28. Curr Microbiol. 2016 Mar;72(3):267-75 [PMID: 26613615]
  29. PLoS One. 2015 Oct 07;10(10):e0140014 [PMID: 26444989]
  30. Chemosphere. 2023 Jan;310:136754 [PMID: 36228733]
  31. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  32. Bioresour Technol. 2020 Aug;310:123445 [PMID: 32361649]
  33. PLoS One. 2013 Apr 12;8(4):e61126 [PMID: 23593407]
  34. Microorganisms. 2021 Sep 14;9(9): [PMID: 34576846]
  35. BMC Genomics. 2023 Mar 15;24(1):115 [PMID: 36922761]
  36. Front Bioeng Biotechnol. 2021 Dec 20;9:800265 [PMID: 34988069]
  37. Int J Biol Macromol. 2020 Jan 15;143:937-951 [PMID: 31739073]
  38. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  39. Appl Environ Microbiol. 2007 Aug;73(16):5199-208 [PMID: 17574999]
  40. Int J Biol Macromol. 2019 Jan;121:930-935 [PMID: 30342137]
  41. Biotechnol Biofuels. 2021 Dec 4;14(1):229 [PMID: 34863263]
  42. J Environ Manage. 2024 Oct;369:122412 [PMID: 39236608]

Word Cloud

Created with Highcharts 10.0.0bacterialgutsymbiontstermitesanalysisWFTSFTrecalcitrantcompositionlignocellulosedegradationspmetabolismprofilessoil-feedingchemicalsmetagenomicfunctionalBasedphyladominatedfollowedFurthermorediversityindicesoperationaltaxonomicresultscompoundscommunitymetabolicpathwaysessentialinformationuniquecontributionsfooddigestionwood-feedingstillinadequatefeedingtypehypothesizedinfluencefunctionalitydegradingorganicpotentiallyprovidealternativeapproachesenvironmentalThereforecanemployedexamine16SrRNAgenesequencesfindingsrevealedtotal26major18commonlyrepresentedalbeitvaryingabundancesSpirochaetes55%FibrobactersFirmicutesbacteria95%Actinobacteriacomingsecond2%ShannonphylogenetictreewellobservedunitsChao1richnessfoundhigherdeducedalphaprincipalcoordinateexhibitedsignificantdistancedissimilarityshoweddifferedsignificantlyTax4FunevaluatedfunctionsrevealingpredominancecarbohydrateaminoacidenergyimplicatedinhabitinggutsactivelyinvolvedMetagenomicsstructurewood-termites:structurestowardmetagenomicsunitpollutantstermite

Similar Articles

Cited By

No available data.