Prenatal social disadvantage is associated with alterations in functional networks at birth.

Ashley N Nielsen, Regina L Triplett, Lourdes M Bernardez, Ursula A Tooley, Max P Herzberg, Rachel E Lean, Sydney Kaplan, Dominique Meyer, Jeanette K Kenley, Dimitrios Alexopoulos, David Losielle, Aidan Latham, Tara A Smyser, Arpana Agrawal, Josh S Shimony, Joshua J Jackson, J Philip Miller, Marcus E Raichle, Barbara B Warner, Cynthia E Rogers, Chad M Sylvester, Deanna M Barch, Joan L Luby, Christopher D Smyser
Author Information
  1. Ashley N Nielsen: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  2. Regina L Triplett: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  3. Lourdes M Bernardez: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
  4. Ursula A Tooley: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110.
  5. Max P Herzberg: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  6. Rachel E Lean: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  7. Sydney Kaplan: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
  8. Dominique Meyer: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
  9. Jeanette K Kenley: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
  10. Dimitrios Alexopoulos: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
  11. David Losielle: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
  12. Aidan Latham: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
  13. Tara A Smyser: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110.
  14. Arpana Agrawal: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  15. Josh S Shimony: Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  16. Joshua J Jackson: Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110.
  17. J Philip Miller: Department of Biostatistics, Washington University in St. Louis, St. Louis, MO 63110. ORCID
  18. Marcus E Raichle: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  19. Barbara B Warner: Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  20. Cynthia E Rogers: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110.
  21. Chad M Sylvester: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  22. Deanna M Barch: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  23. Joan L Luby: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110.
  24. Christopher D Smyser: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110. ORCID

Abstract

Childhood exposure to social disadvantage is a major risk factor for psychiatric disorders and poor developmental, educational, and occupational outcomes, presumably because adverse exposures alter the neurodevelopmental processes that contribute to risk trajectories. Yet, given the limited social mobility in the United States and other countries, childhood social disadvantage is frequently preceded by maternal social disadvantage during pregnancy, potentially altering fetal brain development during a period of high neuroplasticity through hormonal, microbiome, epigenetic, and immune factors that cross the placenta and fetal blood-brain barrier. The current study examines prenatal social disadvantage to determine whether these exposures in utero are associated with alterations in functional brain networks as early as birth. As part of the Early Life Adversity and Biological Embedding study, mothers were recruited during pregnancy, prenatal social disadvantage was assessed across trimesters, and their healthy, full-term offspring were imaged using resting-state functional magnetic resonance imaging during the first weeks of life. Multivariate machine learning methods revealed that neonatal functional connectivity (FC) varied as a function of prenatal exposure to social disadvantage (n = 261, R = 0.43, R = 0.18), with validation in an independent sample. Alterations in FC associated with prenatal social disadvantage occurred brain-wide and were most pronounced in association networks (fronto-parietal, ventral attention, dorsal attention) and the somatomotor network. Amygdala FC was altered at birth, with a pattern shared across subcortical structures. These findings provide critical insights into how early in development functional networks begin to diverge in the context of social disadvantage and elucidate the functional networks that are most impacted.

Keywords

References

  1. Neuroimage. 2017 Jan 15;145(Pt B):166-179 [PMID: 27989847]
  2. JAMA Netw Open. 2022 Apr 1;5(4):e227045 [PMID: 35412624]
  3. J Acad Nutr Diet. 2018 Sep;118(9):1591-1602 [PMID: 30146071]
  4. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2235-44 [PMID: 25825720]
  5. Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1312-9 [PMID: 22529357]
  6. Cell Rep. 2016 Oct 25;17(5):1276-1288 [PMID: 27783943]
  7. Obstet Gynecol. 2013 Nov;122(5):957-965 [PMID: 24104771]
  8. Psychoneuroendocrinology. 2016 Aug;70:85-97 [PMID: 27179233]
  9. Nat Commun. 2024 Feb 28;15(1):1829 [PMID: 38418819]
  10. Nat Rev Neurosci. 2009 Jun;10(6):459-66 [PMID: 19339973]
  11. Dev Psychopathol. 2022 Feb;34(1):95-113 [PMID: 32672144]
  12. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668): [PMID: 25823869]
  13. Cereb Cortex. 2023 Mar 10;33(6):2788-2803 [PMID: 35750056]
  14. Int J Dev Neurosci. 2007 Nov;25(7):415-25 [PMID: 17949937]
  15. Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3808-3818 [PMID: 32015137]
  16. Neuroimage. 2021 Nov 15;242:118466 [PMID: 34389443]
  17. Women Birth. 2019 Feb;32(1):e138-e143 [PMID: 29887508]
  18. Biomedicines. 2021 Aug 26;9(9): [PMID: 34572278]
  19. Front Immunol. 2018 May 24;9:1014 [PMID: 29881376]
  20. JAMA Netw Open. 2022 Jun 1;5(6):e2216406 [PMID: 35679041]
  21. Am J Reprod Immunol. 2022 Mar;87(3):e13489 [PMID: 34958140]
  22. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798 [PMID: 31982357]
  23. J Health Soc Behav. 1983 Dec;24(4):385-96 [PMID: 6668417]
  24. Front Neuroendocrinol. 2018 Apr;49:72-85 [PMID: 29339091]
  25. Curr Opin Behav Sci. 2020 Dec;36:23-28 [PMID: 32719820]
  26. Am J Psychiatry. 2016 Jun 1;173(6):625-34 [PMID: 26771739]
  27. Trends Neurosci. 2019 Apr;42(4):251-262 [PMID: 30808574]
  28. PLoS One. 2022 Aug 25;17(8):e0272155 [PMID: 36006907]
  29. Biol Psychiatry Glob Open Sci. 2023 Mar 22;3(4):837-846 [PMID: 37881545]
  30. Neuron. 2021 Sep 15;109(18):2820-2846 [PMID: 34270921]
  31. Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2204135119 [PMID: 36219693]
  32. J Health Psychol. 1997 Jul;2(3):335-51 [PMID: 22013026]
  33. N Engl J Med. 2018 Jun 28;378(26):2456-2458 [PMID: 29949490]
  34. Cereb Cortex. 2023 Feb 20;33(5):2200-2214 [PMID: 35595540]
  35. Dev Cogn Neurosci. 2021 Dec;52:101025 [PMID: 34700196]
  36. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  37. Neuroimage. 2014 Jan 1;84:320-41 [PMID: 23994314]
  38. Neoreviews. 2019 Dec;20(12):e686-e696 [PMID: 31792156]
  39. Neuron. 2018 Apr 18;98(2):439-452.e5 [PMID: 29673485]
  40. Cereb Cortex. 2016 Jan;26(1):288-303 [PMID: 25316338]
  41. Biol Psychiatry. 2019 Jan 15;85(2):172-181 [PMID: 30122286]
  42. JAMA Pediatr. 2017 Dec 1;171(12):1168-1175 [PMID: 29084329]
  43. Proc Natl Acad Sci U S A. 2021 Mar 30;118(13): [PMID: 33753484]
  44. Dev Psychopathol. 2012 Nov;24(4):1361-76 [PMID: 23062303]
  45. Dev Neurosci. 2019;41(5-6):327-340 [PMID: 32516794]
  46. Transl Psychiatry. 2021 Nov 8;11(1):571 [PMID: 34750359]
  47. Br J Psychiatry. 1987 Jun;150:782-6 [PMID: 3651732]
  48. Cell Metab. 2014 Jan 7;19(1):49-57 [PMID: 24411938]
  49. Adv Neurobiol. 2015;10:269-83 [PMID: 25287545]
  50. Cereb Cortex. 2010 Dec;20(12):2852-62 [PMID: 20237243]
  51. Sci Rep. 2020 Mar 9;10(1):4359 [PMID: 32152381]
  52. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  53. Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2405448121 [PMID: 39621900]
  54. Cereb Cortex Commun. 2020;1(1):tgaa033 [PMID: 32984815]
  55. Psychosom Med. 2018 Jan;80(1):17-27 [PMID: 29016550]
  56. Am J Hum Biol. 2014 Nov-Dec;26(6):723-30 [PMID: 24599586]
  57. J Perinatol. 2023 Apr;43(4):477-483 [PMID: 36914799]

Grants

  1. K23 NS136762/NINDS NIH HHS
  2. R01 MH090786/NIMH NIH HHS
  3. R01 MH121877/NIMH NIH HHS
  4. R01 MH122389/NIMH NIH HHS
  5. T32 MH100019/NIMH NIH HHS
  6. KL2 TR002346/NCATS NIH HHS
  7. R01 MH113883/NIMH NIH HHS
  8. P50 HD103525/NICHD NIH HHS
  9. K01 MH122735/NIMH NIH HHS
  10. R01 NS124767/NINDS NIH HHS
  11. R01 MH113570/NIMH NIH HHS
  12. T32 GR0029379/HHS | NIH | National Institute of Mental Health (NIMH)
  13. R01 DA046224/NIDA NIH HHS

MeSH Term

Humans
Female
Pregnancy
Brain
Magnetic Resonance Imaging
Adult
Infant, Newborn
Prenatal Exposure Delayed Effects
Male
Nerve Net

Word Cloud

Created with Highcharts 10.0.0socialdisadvantagefunctionalprenatalnetworksexposureassociatedbirthFC=riskexposurespregnancyfetalbraindevelopmentstudyalterationsearlyacrossconnectivityR0attentionChildhoodmajorfactorpsychiatricdisorderspoordevelopmentaleducationaloccupationaloutcomespresumablyadversealterneurodevelopmentalprocessescontributetrajectoriesYetgivenlimitedmobilityUnitedStatescountrieschildhoodfrequentlyprecededmaternalpotentiallyalteringperiodhighneuroplasticityhormonalmicrobiomeepigeneticimmunefactorscrossplacentablood-brainbarriercurrentexaminesdeterminewhetheruteropartEarlyLifeAdversityBiologicalEmbeddingmothersrecruitedassessedtrimestershealthyfull-termoffspringimagedusingresting-statemagneticresonanceimagingfirstweekslifeMultivariatemachinelearningmethodsrevealedneonatalvariedfunctionn2614318validationindependentsampleAlterationsoccurredbrain-widepronouncedassociationfronto-parietalventraldorsalsomatomotornetworkAmygdalaalteredpatternsharedsubcorticalstructuresfindingsprovidecriticalinsightsbegindivergecontextelucidateimpactedPrenatalinfantsocieconomicstatus

Similar Articles

Cited By