Exploring the diversity of microbes and natural products from fungus-growing termite tripartite symbiosis.

Muhammad Shoaib, Ruining Bai, Shuai Li, Yan Xie, Yulong Shen, Jinfeng Ni
Author Information
  1. Muhammad Shoaib: State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China.
  2. Ruining Bai: State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China.
  3. Shuai Li: State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China.
  4. Yan Xie: State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China.
  5. Yulong Shen: State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China.
  6. Jinfeng Ni: State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China.

Abstract

The fungus-growing termite is considered a distinct ecological niche because it involves a tripartite symbiosis between the termite host, gut microflora, and the fungus , which has led to the expansion of highly organized and complex societies among termite colonies. Tripartite symbiosis in fungus-growing termites may promote unique microbes with distinctive metabolic pathways that may serve as valuable resources for developing novel antimicrobial therapeutic options. Recent research on complex tripartite symbioses has revealed a plethora of previously unknown natural products that may have ecological roles in signaling, communication, or defense responses. Natural products produced by symbionts may act as crucial intermediaries between termites and their pathogens by providing direct protection through their biological activities. Herein, we review the state-of-the-art research on both microbes and natural products originated from fungus-growing termite tripartite symbiosis, highlighting the diversity of microbes and the uniqueness of natural product classes and their bioactivities. Additionally, we emphasize future research prospects on fungus-growing termite related microorganisms, with a particular focus on their potential roles in bioactive product discovery.

Keywords

References

  1. FEMS Microbiol Ecol. 2012 Feb;79(2):504-17 [PMID: 22092951]
  2. Org Lett. 2010 Nov 5;12(21):5012-5 [PMID: 20936815]
  3. Annu Rev Entomol. 2021 Jan 7;66:297-316 [PMID: 32926791]
  4. Infect Drug Resist. 2019 Dec 20;12:3903-3910 [PMID: 31908502]
  5. Microb Biotechnol. 2020 Nov;13(6):1702-1704 [PMID: 32881368]
  6. ACS Omega. 2020 Jun 25;5(26):16076-16084 [PMID: 32656429]
  7. Appl Environ Microbiol. 2015 Oct;81(19):6577-88 [PMID: 26162887]
  8. Gene. 1996 Feb 22;169(1):9-16 [PMID: 8635756]
  9. Methods Enzymol. 2012;515:317-35 [PMID: 22999180]
  10. PLoS One. 2013;8(2):e56464 [PMID: 23437139]
  11. Microb Ecol. 2016 Jan;71(1):207-20 [PMID: 26518432]
  12. Int J Mol Sci. 2018 Sep 06;19(9): [PMID: 30200599]
  13. ACS Omega. 2021 Feb 05;6(6):4329-4334 [PMID: 33623843]
  14. Nat Prod Res. 2019 Jun;33(12):1751-1755 [PMID: 29382222]
  15. Molecules. 2020 Oct 29;25(21): [PMID: 33138110]
  16. Mol Ecol. 2006 Feb;15(2):505-16 [PMID: 16448416]
  17. Int J Syst Evol Microbiol. 2020 Nov;70(11):5806-5811 [PMID: 32969785]
  18. Sci Rep. 2013 Nov 19;3:3250 [PMID: 24248063]
  19. Int J Syst Evol Microbiol. 2014 Sep;64(Pt 9):2956-2961 [PMID: 24899656]
  20. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10224-30 [PMID: 25979941]
  21. Org Lett. 2012 Jun 1;14(11):2822-5 [PMID: 22591554]
  22. Int J Mol Sci. 2018 Jan 07;19(1): [PMID: 29316657]
  23. Chem Rev. 2006 Aug;106(8):3468-96 [PMID: 16895337]
  24. Int J Syst Evol Microbiol. 2007 Apr;57(Pt 4):696-700 [PMID: 17392189]
  25. Chem Sci. 2014 Nov 1;5(11):4333-4338 [PMID: 25386334]
  26. Int J Syst Evol Microbiol. 2007 Apr;57(Pt 4):887-891 [PMID: 17392226]
  27. BMC Microbiol. 2019 Jul 17;19(1):164 [PMID: 31315576]
  28. Microb Ecol. 2014 Aug;68(2):416-25 [PMID: 24584416]
  29. Biotechnol Adv. 2013 Nov;31(6):838-50 [PMID: 23623853]
  30. Nat Rev Genet. 2023 Aug;24(8):535-549 [PMID: 37085594]
  31. Springerplus. 2015 Sep 02;4:471 [PMID: 26355944]
  32. Commun Biol. 2021 Dec 6;4(1):1362 [PMID: 34873267]
  33. Chem Soc Rev. 2018 Mar 5;47(5):1638-1651 [PMID: 28745342]
  34. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3463-E3470 [PMID: 29581252]
  35. Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1185-1192 [PMID: 12148626]
  36. Insects. 2019 Mar 28;10(4): [PMID: 30925664]
  37. J Nat Prod. 2009 Oct;72(10):1782-5 [PMID: 19795843]
  38. J Chem Ecol. 2008 Nov;34(11):1422-9 [PMID: 18949519]
  39. Environ Microbiol Rep. 2010 Aug;2(4):534-540 [PMID: 22896766]
  40. J Pharm Anal. 2020 Jun;10(3):201-208 [PMID: 32612866]
  41. Antimicrob Agents Chemother. 2003 Jul;47(7):2113-7 [PMID: 12821455]
  42. Int J Syst Evol Microbiol. 2020 Oct;70(10):5255-5262 [PMID: 32845828]
  43. J Antibiot (Tokyo). 1999 Oct;52(10):873-9 [PMID: 10604756]
  44. Curr Opin Microbiol. 2019 Oct;51:39-45 [PMID: 31077935]
  45. Microbiol Res. 2021 Feb;243:126646 [PMID: 33227681]
  46. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11692-7 [PMID: 20547882]
  47. Bioorg Chem. 2020 Mar;96:103576 [PMID: 31986463]
  48. J Microbiol. 2020 Mar;58(3):235-244 [PMID: 32108318]
  49. Molecules. 2019 Aug 16;24(16): [PMID: 31426402]
  50. Front Microbiol. 2022 Jun 01;13:893393 [PMID: 35722323]
  51. Environ Microbiol Rep. 2019 Apr;11(2):196-205 [PMID: 30556304]
  52. Nutrients. 2019 Apr 01;11(4): [PMID: 30939853]
  53. J Agric Food Chem. 2013 Feb 20;61(7):1521-4 [PMID: 23360202]
  54. Appl Biochem Biotechnol. 2020 Dec;192(4):1270-1283 [PMID: 32720080]
  55. PLoS One. 2011 Feb 22;6(2):e16763 [PMID: 21364940]
  56. 3 Biotech. 2019 Feb;9(2):45 [PMID: 30729069]
  57. Int J Syst Evol Microbiol. 2016 Nov;66(11):4600-4608 [PMID: 27514386]
  58. Mycologia. 2007 Nov-Dec;99(6):936-57 [PMID: 18333517]
  59. BMC Microbiol. 2022 Mar 25;22(1):80 [PMID: 35337263]
  60. J Antibiot (Tokyo). 2020 Nov;73(11):766-771 [PMID: 32533072]
  61. Molecules. 2022 Feb 13;27(4): [PMID: 35209047]
  62. Nucleic Acids Res. 2018 Mar 16;46(5):e28 [PMID: 29240926]
  63. Insect Sci. 2021 Apr;28(2):392-402 [PMID: 32394613]
  64. Chemistry. 2017 Jul 12;23(39):9338-9345 [PMID: 28463423]
  65. mBio. 2021 Jun 29;12(3):e0355120 [PMID: 34126770]
  66. J Exp Biol. 2014 Jul 15;217(Pt 14):2540-7 [PMID: 24803469]
  67. J Asian Nat Prod Res. 2013;15(4):422-5 [PMID: 23418739]
  68. Microbiol Res. 2015 Oct;179:29-37 [PMID: 26411892]
  69. Nat Prod Rep. 2022 Feb 23;39(2):231-248 [PMID: 34879123]
  70. Chembiochem. 2020 Oct 15;21(20):2991-2996 [PMID: 32470183]
  71. PLoS One. 2020 May 1;15(5):e0232329 [PMID: 32357167]
  72. Org Lett. 2017 Mar 3;19(5):1000-1003 [PMID: 28207275]
  73. Int J Syst Evol Microbiol. 2015 Dec;65(12):4589-4594 [PMID: 26377069]
  74. Nat Chem Biol. 2009 Jun;5(6):391-3 [PMID: 19330011]
  75. Antonie Van Leeuwenhoek. 2013 Nov;104(5):869-83 [PMID: 23942613]
  76. Org Lett. 2020 Apr 3;22(7):2634-2638 [PMID: 32193935]
  77. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16169-74 [PMID: 24046367]
  78. Sci Rep. 2019 Jun 19;9(1):8819 [PMID: 31217550]
  79. mSphere. 2019 May 15;4(3): [PMID: 31092601]
  80. Molecules. 2018 Nov 16;23(11): [PMID: 30453579]
  81. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11996-E12004 [PMID: 30504145]
  82. J Basic Microbiol. 2015 Aug;55(8):1021-8 [PMID: 25709053]
  83. Nat Biotechnol. 2021 May;39(5):555-560 [PMID: 33398153]
  84. Front Microbiol. 2021 Jan 15;11:581219 [PMID: 33519727]
  85. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  86. Int J Syst Evol Microbiol. 2020 Oct;70(10):5226-5234 [PMID: 32815801]
  87. PLoS One. 2013 Jul 17;8(7):e69184 [PMID: 23874908]
  88. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  89. Antonie Van Leeuwenhoek. 2018 Mar;111(3):471-478 [PMID: 29090357]
  90. Org Lett. 2016 Jul 15;18(14):3338-41 [PMID: 27341414]
  91. Environ Microbiol. 2016 May;18(5):1440-51 [PMID: 26346907]
  92. Antibiotics (Basel). 2018 Sep 13;7(3): [PMID: 30217010]
  93. Nat Rev Microbiol. 2020 May;18(5):275-285 [PMID: 31745331]
  94. Microbiol Spectr. 2022 Dec 21;10(6):e0123422 [PMID: 36250871]
  95. Front Microbiol. 2021 Apr 01;12:649962 [PMID: 33868208]
  96. Org Lett. 2017 Apr 7;19(7):1772-1775 [PMID: 28326787]
  97. Sci Rep. 2020 Jul 24;10(1):12384 [PMID: 32709946]
  98. Annu Rev Entomol. 2021 Jan 7;66:23-43 [PMID: 33417825]
  99. Molecules. 2023 Mar 13;28(6): [PMID: 36985566]
  100. Genome Announc. 2018 Apr 26;6(17): [PMID: 29700152]
  101. AAPS PharmSciTech. 2022 Mar 15;23(3):86 [PMID: 35292867]
  102. Beilstein J Org Chem. 2016 Feb 19;12:314-27 [PMID: 26977191]
  103. Org Biomol Chem. 2019 Mar 27;17(13):3348-3355 [PMID: 30693926]
  104. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12940-12945 [PMID: 27803316]

Word Cloud

Created with Highcharts 10.0.0termitefungus-growingsymbiosistripartitemaymicrobesnaturalproductsresearchecologicalcomplexTripartitetermitesrolesdiversityproductconsidereddistinctnicheinvolveshostgutmicroflorafungusledexpansionhighlyorganizedsocietiesamongcoloniespromoteuniquedistinctivemetabolicpathwaysservevaluableresourcesdevelopingnovelantimicrobialtherapeuticoptionsRecentsymbiosesrevealedplethorapreviouslyunknownsignalingcommunicationdefenseresponsesNaturalproducedsymbiontsactcrucialintermediariespathogensprovidingdirectprotectionbiologicalactivitiesHereinreviewstate-of-the-artoriginatedhighlightinguniquenessclassesbioactivitiesAdditionallyemphasizefutureprospectsrelatedmicroorganismsparticularfocuspotentialbioactivediscoveryExploringDiversityFungus-growingMicrobesTermitomyces

Similar Articles

Cited By