Risk and protective factors for ASF in domestic pigs and wild boar in the EU, and mitigation measures for managing the disease in wild boar.

European Food Safety Authority (EFSA), Anette Ella Boklund, Karl Ståhl, Miguel Ángel Miranda Chueca, Tomasz Podgórski, Timothée Vergne, José Cortiñas Abrahantes, Eleonora Cattaneo, Sofie Dhollander, Alexandra Papanikolaou, Stefania Tampach, Lina Mur
Author Information

Abstract

Five epidemiological aspects of ASF were evaluated using literature reviews, field studies, questionnaires and mathematical models. First, a literature review and a case-control study in commercial pig farms emphasised the importance of biosecurity and farming practices, including the spread of manure around farms and the use of bedding material as risk factors, while the use of insect nets was a protective factor. Second, although wild boar density is a relevant known factor, the statistical and mechanistic models did not show a clear and consistent effect of wild boar density on ASF epidemiology in the selected scenarios. Other factors, such as vegetation, altitude, climate and barriers affecting population connectivity, also played a role on ASF epidemiology in wild boar. Third, knowledge on competence, presence and surveillance was updated concluding that this species did not play any role in the current ASF epidemic in affected areas of the EU. Available scientific evidence suggests that stable flies and horse flies are exposed to ASFV in affected areas of the EU and have the capacity to introduce ASFV into farms and transmit it to pigs. However, there is uncertainty about whether this occurs, and if so, to what extent. Fourth, research and field experience from affected countries in the EU demonstrates that the use of fences, potentially used with existing road infrastructure, coupled with other control methods such as culling and carcass removal, can effectively reduce wild boar movements contributing to ASF management in wild boar. Fences can contribute to control ASF in both scenarios, focal introductions and wave-like spread. Fifth, the use of gonadotropin-releasing hormone (GnRH) vaccines as an immune contraceptive has the potential, as a complementary tool, to reduce and control wild boar populations. However, the development of an oral GnRH vaccine for wild boar still requires substantial additional work.

Keywords

References

  1. Prev Vet Med. 2013 May 15;110(1):45-53 [PMID: 23499360]
  2. Vet Rec. 1994 Aug 27;135(9):207-9 [PMID: 7998382]
  3. Prev Vet Med. 2020 Aug;181:104556 [PMID: 30482617]
  4. Viruses. 2020 Jul 20;12(7): [PMID: 32698448]
  5. EFSA J. 2018 Jan 24;16(1):e05123 [PMID: 32625671]
  6. Infect Genet Evol. 2024 Nov;125:105673 [PMID: 39341523]
  7. Bull Off Int Epizoot. 1966 May;66(1):699-705 [PMID: 6011924]
  8. Med Vet Entomol. 2018 Sep;32(3):298-303 [PMID: 29344956]
  9. Am J Reprod Immunol. 2023 Jan;89(1):e13653 [PMID: 36373212]
  10. EFSA J. 2017 Mar 23;15(3):e04732 [PMID: 32625438]
  11. Transbound Emerg Dis. 2018 Feb;65(1):e210-e213 [PMID: 28762629]
  12. Pest Manag Sci. 2022 Jun;78(6):2277-2286 [PMID: 35229454]
  13. Pathogens. 2023 Jan 17;12(2): [PMID: 36839424]
  14. J Anim Sci. 2019 May 30;97(6):2283-2290 [PMID: 30753509]
  15. Int J Insect Sci. 2015 May 21;7:19-25 [PMID: 26816486]
  16. Transbound Emerg Dis. 2021 May;68(3):1541-1549 [PMID: 32910533]
  17. Vector Borne Zoonotic Dis. 2013 Oct;13(10):775-7 [PMID: 23808979]
  18. Animals (Basel). 2022 Feb 16;12(4): [PMID: 35203198]
  19. Animals (Basel). 2021 Sep 14;11(9): [PMID: 34573659]
  20. EFSA J. 2024 May 16;22(5):e8809 [PMID: 38756349]
  21. PLoS One. 2020 Sep 18;15(9):e0238429 [PMID: 32946480]
  22. Vet Parasitol. 2018 Jan 15;249:2-16 [PMID: 29279082]
  23. Transbound Emerg Dis. 2018 Feb;65(1):123-134 [PMID: 28296281]
  24. Prev Vet Med. 2018 Apr 1;152:1-11 [PMID: 29559099]
  25. Clin Microbiol Infect. 2009 May;15(5):407-14 [PMID: 19489923]
  26. PLoS One. 2019 Nov 27;14(11):e0225657 [PMID: 31774871]
  27. BMC Genom Data. 2021 Nov 27;22(1):53 [PMID: 34837959]
  28. Res Vet Sci. 1987 Jul;43(1):109-12 [PMID: 2820006]
  29. Ecol Evol. 2022 Apr 06;12(4):e8804 [PMID: 35414901]
  30. J Gen Virol. 2004 Aug;85(Pt 8):2177-2187 [PMID: 15269356]
  31. Front Vet Sci. 2021 Oct 12;8:726117 [PMID: 34712721]
  32. Sci Rep. 2020 Jun 23;10(1):10215 [PMID: 32576841]
  33. Acta Parasitol. 2015 Jun;60(2):290-7 [PMID: 26203998]
  34. PLoS One. 2011;6(5):e20383 [PMID: 21655242]
  35. EFSA J. 2018 Nov 29;16(11):e05494 [PMID: 32625771]
  36. J Environ Manage. 2024 Aug;365:121561 [PMID: 38924890]
  37. PLoS One. 2019 Jun 3;14(6):e0217367 [PMID: 31158242]
  38. Spat Spatiotemporal Epidemiol. 2016 Nov;19:70-77 [PMID: 27839582]
  39. J Vector Ecol. 2014 Dec;39(2):238-48 [PMID: 25424252]
  40. EFSA J. 2017 Nov 07;15(11):e05068 [PMID: 32625356]
  41. Parasit Vectors. 2024 Jun 28;17(1):278 [PMID: 38943218]
  42. Animals (Basel). 2024 Sep 03;14(17): [PMID: 39272341]
  43. Emerg Infect Dis. 2012 Jun;18(6):1026-8 [PMID: 22607706]
  44. Front Vet Sci. 2020 May 13;7:215 [PMID: 32478103]
  45. Transbound Emerg Dis. 2018 Apr;65(2):557-566 [PMID: 29027378]
  46. PLoS One. 2017 Aug 24;12(8):e0183441 [PMID: 28837610]
  47. Anim Reprod Sci. 2008 Oct;108(1-2):37-48 [PMID: 17714891]
  48. Med Vet Entomol. 1997 Apr;11(2):159-64 [PMID: 9226646]
  49. Prev Vet Med. 2020 Apr;177:104691 [PMID: 31122672]
  50. Transbound Emerg Dis. 2022 Sep;69(5):e1682-e1692 [PMID: 35243800]
  51. EFSA J. 2022 May 04;20(5):e07290 [PMID: 35515335]
  52. EFSA J. 2021 Jun 21;19(6):e06676 [PMID: 34188718]
  53. J Parasitol. 1976 Oct;62(5):799-810 [PMID: 978368]
  54. EFSA J. 2021 May 06;19(5):e06572 [PMID: 33976715]
  55. Transbound Emerg Dis. 2018 Oct;65(5):1152-1157 [PMID: 29877056]
  56. Ticks Tick Borne Dis. 2014 Sep;5(5):582-9 [PMID: 24980962]
  57. Int J Zoonoses. 1974 Dec;1(2):43-57 [PMID: 4619821]
  58. Annu Rev Anim Biosci. 2020 Feb 15;8:221-246 [PMID: 31743062]
  59. PLoS One. 2015 Sep 14;10(9):e0137718 [PMID: 26366570]
  60. Front Vet Sci. 2021 Aug 24;8:723375 [PMID: 34504890]
  61. Pharmaceutics. 2021 Jul 15;13(7): [PMID: 34371772]
  62. Med Vet Entomol. 2021 Sep;35(3):484-489 [PMID: 33314280]
  63. Transbound Emerg Dis. 2021 Sep;68(5):2696-2702 [PMID: 33527715]
  64. Porcine Health Manag. 2019 Jan 9;5:6 [PMID: 30637117]
  65. Prev Vet Med. 2011 Dec 1;102(3):167-74 [PMID: 21840611]
  66. Pathogens. 2022 Dec 28;12(1): [PMID: 36678395]
  67. Exp Appl Acarol. 2016 Jun;69(2):225-32 [PMID: 26940844]
  68. J Med Entomol. 1994 May;31(3):373-81 [PMID: 8057310]
  69. Vet Microbiol. 2022 Mar;266:109365 [PMID: 35151121]
  70. J Vet Res. 2017 Dec 27;61(4):375-380 [PMID: 29978098]
  71. Med Vet Entomol. 2001 Jun;15(2):208-11 [PMID: 11434556]
  72. Front Microbiol. 2015 Apr 14;6:314 [PMID: 25926829]
  73. Viruses. 2022 Sep 23;14(10): [PMID: 36298662]
  74. Pathogens. 2021 Jan 19;10(1): [PMID: 33478169]
  75. Sci Rep. 2021 Jan 22;11(1):2098 [PMID: 33483559]
  76. Animals (Basel). 2021 Dec 29;12(1): [PMID: 35011174]
  77. Integr Zool. 2010 Mar;5(1):15-30 [PMID: 21392318]
  78. Virus Res. 2013 Dec 26;178(2):328-39 [PMID: 24076499]
  79. Transbound Emerg Dis. 2018 Dec;65(6):1588-1596 [PMID: 29799177]
  80. Transbound Emerg Dis. 2022 Sep;69(5):2656-2666 [PMID: 34902218]
  81. Animals (Basel). 2022 Jan 04;12(1): [PMID: 35011221]
  82. Ann Entomol Soc Am. 1966 Jan;59(1):92-122 [PMID: 5966138]
  83. Parasitol Res. 2012 Oct;111(4):1779-83 [PMID: 22782474]
  84. Am J Reprod Immunol. 2006 May;55(5):378-84 [PMID: 16635212]
  85. EFSA J. 2018 Jul 11;16(7):e05344 [PMID: 32625980]
  86. BMC Vet Res. 2016 Jan 04;12:1 [PMID: 26728767]
  87. Viruses. 2023 Sep 20;15(9): [PMID: 37766361]
  88. Transbound Emerg Dis. 2017 Aug;64(4):1322-1328 [PMID: 26952266]
  89. Ecol Evol. 2023 Sep 28;13(10):e10575 [PMID: 37780088]
  90. Transbound Emerg Dis. 2021 May;68(3):1190-1204 [PMID: 32750188]
  91. J Gen Virol. 2006 Jul;87(Pt 7):1863-1871 [PMID: 16760388]
  92. Animals (Basel). 2023 Jan 27;13(3): [PMID: 36766317]
  93. Euro Surveill. 2023 Jun;28(26): [PMID: 37382886]
  94. Vet Med Sci. 2020 Feb;6(1):100-104 [PMID: 31560174]
  95. J Anim Sci. 2001 Oct;79(10):2524-35 [PMID: 11721830]
  96. Conserv Biol. 2010 Feb;24(1):171-81 [PMID: 19558522]
  97. Front Vet Sci. 2023 Nov 06;10:1295127 [PMID: 38026636]
  98. J Med Entomol. 1992 Jul;29(4):652-6 [PMID: 1495075]
  99. J Environ Manage. 2018 Jan 1;205:209-214 [PMID: 28987917]
  100. Prev Vet Med. 2024 Aug;229:106238 [PMID: 38870565]
  101. Vet Rec. 1990 Jan 13;126(2):32-7 [PMID: 2301109]
  102. Vet Rec. 2016 Mar 12;178(11):262-7 [PMID: 26966305]
  103. Parasit Vectors. 2020 Dec 9;13(1):618 [PMID: 33298119]
  104. Viruses. 2023 May 26;15(6): [PMID: 37376554]
  105. Sci Rep. 2023 Dec 1;13(1):21186 [PMID: 38040788]

Word Cloud

Created with Highcharts 10.0.0wildboarASFusefactorsEUfarmsepidemiologyaffectedcontrolliteraturefieldmodelsspreadriskprotectivefactordensityscenariosroleareasfliesASFVpigsHoweverfencescanreduceGnRHFiveepidemiologicalaspectsevaluatedusingreviewsstudiesquestionnairesmathematicalFirstreviewcase-controlstudycommercialpigemphasisedimportancebiosecurityfarmingpracticesincludingmanurearoundbeddingmaterialinsectnetsSecondalthoughrelevantknownstatisticalmechanisticshowclearconsistenteffectselectedvegetationaltitudeclimatebarriersaffectingpopulationconnectivityalsoplayedThirdknowledgecompetencepresencesurveillanceupdatedconcludingspeciesplaycurrentepidemicAvailablescientificevidencesuggestsstablehorseexposedcapacityintroducetransmituncertaintywhetheroccursextentFourthresearchexperiencecountriesdemonstratespotentiallyusedexistingroadinfrastructurecoupledmethodscullingcarcassremovaleffectivelymovementscontributingmanagementFencescontributefocalintroductionswave-likeFifthgonadotropin-releasinghormonevaccinesimmunecontraceptivepotentialcomplementarytoolpopulationsdevelopmentoralvaccinestillrequiressubstantialadditionalworkRiskdomesticmitigationmeasuresmanagingdiseaseAfricanswinefeverEuropeimmunocontraceptionvectors

Similar Articles

Cited By