Microfiber evanescent-field photothermal gas detection using acoustic-induced mode-dependent frequency shift.

Yi Zhu, Anbo Guo, Jiangtao Xu, Zhengwei Zhang, Fufei Pang, Weijian Zhang, Xianglong Zeng, Jianfeng Sun
Author Information
  1. Yi Zhu: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China. ORCID
  2. Anbo Guo: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China.
  3. Jiangtao Xu: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China.
  4. Zhengwei Zhang: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China.
  5. Fufei Pang: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China. ORCID
  6. Weijian Zhang: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China.
  7. Xianglong Zeng: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China. ORCID
  8. Jianfeng Sun: Shanghai Satellite Network Research Institute Co., Ltd, Shanghai, China.

Abstract

In this study, we experimentally showcase the microfiber evanescent-field photothermal gas detection by exploiting all-fiber MHz-level frequency shift scheme. Based on the acousto-optic interaction effect, the low-frequency shifts of 0.9���MHz and 1.83���MHz can be obtained through the cyclic conversion between the transverse core modes LP and LP in the few-mode fiber. Our proposed all-fiber frequency shifters show flexible MHz-level up(down) frequency shifts with superior sideband rejection ratio (over 40���dB) and low insertion loss (less than 1���dB). Furthermore, an all-fiber heterodyne interferometric detection system is implemented by leveraging the above low-frequency shifters, in which around 1-��m-diameter microfiber is investigated for photothermal gas detection. A pump-probe configuration is employed to obtain the photothermal effect induced by the gas absorption of the modulated evanescent field. By demodulating the phase of the beat signal output by the interferometer, an equivalent detection limit (1) of 32���ppm and a response time of 22���s are achieved for ammonia, as well as 0.24���% instability within 48 pump cycles. Given its compact all-fiber configuration and high sensitivity with fast response, the experimental results can pave the way for widespread applications like heterodyne detection, fiber optical sensors, and interplanetary coherent communications.

Keywords

References

  1. Nat Commun. 2022 Apr 21;13(1):2181 [PMID: 35449158]
  2. Appl Opt. 2021 May 20;60(15):C84-C91 [PMID: 34143110]
  3. Appl Opt. 1993 Jun 20;32(18):3177-89 [PMID: 20829931]
  4. Sci Rep. 2016 Dec 23;6:39410 [PMID: 28009011]
  5. Opt Lett. 2019 Feb 1;44(3):622-625 [PMID: 30702694]
  6. Photoacoustics. 2020 Sep 04;20:100206 [PMID: 32995269]
  7. Nat Commun. 2015 Apr 13;6:6767 [PMID: 25866015]
  8. Opt Lett. 2022 Jul 15;47(14):3419-3422 [PMID: 35838694]
  9. Opt Lett. 2018 Dec 1;43(23):5841-5844 [PMID: 30499956]
  10. Opt Express. 2009 Nov 23;17(24):21566-80 [PMID: 19997398]
  11. Nat Commun. 2020 Feb 12;11(1):847 [PMID: 32051415]
  12. Phys Rev Lett. 2006 Oct 20;97(16):163901 [PMID: 17155394]
  13. Opt Lett. 2021 Jan 1;46(1):114-117 [PMID: 33362029]
  14. Nature. 2003 Dec 18;426(6968):816-9 [PMID: 14685232]
  15. Appl Opt. 1996 Mar 20;35(9):1566-73 [PMID: 21085275]
  16. Opt Express. 2016 Feb 22;24(4):3543-9 [PMID: 26907011]
  17. Appl Opt. 1981 Jul 15;20(14):2539-54 [PMID: 20332989]
  18. Opt Express. 2015 Jun 29;23(13):17576-83 [PMID: 26191765]
  19. Opt Lett. 1986 Jun 1;11(6):389-91 [PMID: 19730641]
  20. Opt Express. 2021 Sep 27;29(20):32568-32579 [PMID: 34615323]
  21. Opt Express. 2017 May 1;25(9):10434-10440 [PMID: 28468414]
  22. Opt Express. 2020 Dec 7;28(25):38115-38126 [PMID: 33379631]
  23. Opt Lett. 2021 Jun 1;46(11):2710-2713 [PMID: 34061094]
  24. Opt Lett. 2019 Feb 1;44(3):598-601 [PMID: 30702688]
  25. Biosens Bioelectron. 2005 Jan 15;20(7):1312-9 [PMID: 15590284]
  26. Opt Lett. 1997 Apr 15;22(8):507-9 [PMID: 18183249]
  27. Opt Express. 2016 Aug 22;24(17):19278-85 [PMID: 27557207]

Word Cloud

Created with Highcharts 10.0.0detectionphotothermalgasfrequencyall-fibermicrofibershiftheterodyneevanescent-fieldMHz-leveleffectlow-frequencyshifts01cancyclicconversiontransversemodesLPfibershiftersconfigurationevanescentfieldresponseacoustic-inducedmode-dependentstudyexperimentallyshowcaseexploitingschemeBasedacousto-opticinteraction9���MHz83���MHzobtainedcorefew-modeproposedshowflexiblesuperiorsidebandrejectionratio40���dBlowinsertionlossless1���dBFurthermoreinterferometricsystemimplementedleveragingaround1-��m-diameterinvestigatedpump-probeemployedobtaininducedabsorptionmodulateddemodulatingphasebeatsignaloutputinterferometerequivalentlimit32���ppmtime22���sachievedammoniawell24���%instabilitywithin48pumpcyclesGivencompacthighsensitivityfastexperimentalresultspavewaywidespreadapplicationslikeopticalsensorsinterplanetarycoherentcommunicationsMicrofiberusing

Similar Articles

Cited By