Hepatic and pulmonary macrophage activity in a mucosal challenge model of Ebola virus disease.

Timothy G Wanninger, Omar A Saldarriaga, Esteban Arroyave, Daniel E Millian, Jason E Comer, Slobodan Paessler, Heather L Stevenson
Author Information
  1. Timothy G Wanninger: Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.
  2. Omar A Saldarriaga: Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.
  3. Esteban Arroyave: Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.
  4. Daniel E Millian: Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.
  5. Jason E Comer: Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, LA, United States.
  6. Slobodan Paessler: Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.
  7. Heather L Stevenson: Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.

Abstract

Background: The inflammatory macrophage response contributes to severe Ebola virus disease, with liver and lung injury in humans.
Objective: We sought to further define the activation status of hepatic and pulmonary macrophage populations in Ebola virus disease.
Methods: We compared liver and lung tissue from terminal Ebola virus (EBOV)-infected and uninfected control cynomolgus macaques challenged via the conjunctival route. Gene and protein expression was quantified using the nCounter and GeoMx Digital Spatial Profiling platforms. Macrophage phenotypes were further quantified by digital pathology analysis.
Results: Hepatic macrophages in the EBOV-infected group demonstrated a mixed inflammatory/non-inflammatory profile, with upregulation of CD163 protein expression, associated with macrophage activation syndrome. Hepatic macrophages also showed differential expression of gene sets related to monocyte/macrophage differentiation, antigen presentation, and T cell activation, which were associated with decreased MHC-II allele expression. Moreover, hepatic macrophages had enriched expression of genes and proteins targetable with known immunomodulatory therapeutics, including S100A9, IDO1, and CTLA-4. No statistically significant differences in M1/M2 gene expression were observed in hepatic macrophages compared to controls. The significant changes that occurred in both the liver and lung were more pronounced in the liver.
Conclusion: These data demonstrate that hepatic macrophages in terminal conjunctivally challenged cynomolgus macaques may express a unique inflammatory profile compared to other macaque models and that macrophage-related pharmacologically druggable targets are expressed in both the liver and the lung in Ebola virus disease.

Keywords

References

  1. J Gastroenterol. 2018 Mar;53(3):362-376 [PMID: 29247356]
  2. Arch Pathol Lab Med. 1996 Feb;120(2):140-55 [PMID: 8712894]
  3. J Leukoc Biol. 1994 Feb;55(2):259-61 [PMID: 7507970]
  4. Sci Rep. 2017 Aug 29;7(1):9730 [PMID: 28852031]
  5. Nat Biotechnol. 2022 Mar;40(3):308-318 [PMID: 35132261]
  6. J Immunol. 2006 Nov 15;177(10):7303-11 [PMID: 17082649]
  7. N Engl J Med. 2019 Dec 12;381(24):2293-2303 [PMID: 31774950]
  8. Virology. 2003 Jan 5;305(1):115-23 [PMID: 12504546]
  9. Clin Exp Immunol. 1988 Jun;72(3):510-5 [PMID: 3048809]
  10. Nat Rev Immunol. 2017 May;17(5):306-321 [PMID: 28317925]
  11. Int J Exp Pathol. 1995 Aug;76(4):227-36 [PMID: 7547435]
  12. Front Med (Lausanne). 2021 Jan 08;7:615599 [PMID: 33490096]
  13. Toxicol Sci. 2012 Jun;127(2):609-19 [PMID: 22461450]
  14. Microbes Infect. 2011 Oct;13(11):930-6 [PMID: 21651988]
  15. Front Cell Infect Microbiol. 2022 Oct 12;12:1023557 [PMID: 36310868]
  16. J Immunol Methods. 2001 Jul 1;253(1-2):57-68 [PMID: 11384669]
  17. Exp Anim. 2002 Oct;51(5):447-55 [PMID: 12451705]
  18. Virology. 2001 May 25;284(1):20-5 [PMID: 11352664]
  19. Front Immunol. 2021 Aug 16;12:709772 [PMID: 34484210]
  20. Hepatol Commun. 2019 Apr 22;3(6):730-743 [PMID: 31168508]
  21. Emerg Infect Dis. 2019 Feb;25(2):290-298 [PMID: 30666927]
  22. J Leukoc Biol. 2002 Mar;71(3):445-57 [PMID: 11867682]
  23. Front Immunol. 2014 Nov 20;5:585 [PMID: 25477879]
  24. Clin Infect Dis. 1998 Aug;27(2):404-6 [PMID: 9709901]
  25. Nat Rev Dis Primers. 2020 Feb 20;6(1):13 [PMID: 32080199]
  26. Am J Pathol. 2020 Jul;190(7):1449-1460 [PMID: 32275904]
  27. Am J Pathol. 2011 May;178(5):2121-35 [PMID: 21514427]
  28. Cell. 2020 Nov 25;183(5):1383-1401.e19 [PMID: 33159858]
  29. J Cell Physiol. 2018 Sep;233(9):6425-6440 [PMID: 29319160]
  30. J Hepatol. 2017 Jun;66(6):1300-1312 [PMID: 28267621]
  31. Viruses. 2019 Sep 23;11(10): [PMID: 31547585]
  32. Trends Biochem Sci. 1996 Apr;21(4):134-40 [PMID: 8701470]
  33. J Comp Pathol. 1992 Feb;106(2):137-52 [PMID: 1597531]
  34. Front Oncol. 2022 Jun 29;12:890410 [PMID: 35847846]
  35. Annu Rev Pathol. 2017 Jan 24;12:387-418 [PMID: 27959626]
  36. J Immunother Cancer. 2015 Dec 15;3:42 [PMID: 26674611]
  37. Arch Virol. 2018 Apr;163(4):855-865 [PMID: 29248968]
  38. Mediators Inflamm. 2013;2013:391984 [PMID: 23476103]
  39. Infect Dis Clin North Am. 2019 Dec;33(4):953-976 [PMID: 31668200]
  40. J Leukoc Biol. 2018 Oct;104(4):717-727 [PMID: 30095866]
  41. Annu Rev Immunol. 2018 Apr 26;36:247-277 [PMID: 29328785]
  42. Viruses. 2017 Oct 29;9(11): [PMID: 29109373]
  43. Pathol Int. 2023 Dec;73(12):593-600 [PMID: 37933792]
  44. Lancet. 2019 Mar 2;393(10174):936-948 [PMID: 30777297]
  45. Front Immunol. 2022 Feb 25;13:812431 [PMID: 35281057]
  46. Trends Pharmacol Sci. 2018 Mar;39(3):307-325 [PMID: 29254698]
  47. Nat Commun. 2018 Oct 22;9(1):4383 [PMID: 30348985]
  48. Viruses. 2022 Mar 11;14(3): [PMID: 35336986]
  49. mBio. 2021 Aug 31;12(4):e0151721 [PMID: 34372693]
  50. Curr Opin Immunol. 2021 Aug;71:27-33 [PMID: 33873076]
  51. Front Immunol. 2018 Jun 11;9:1298 [PMID: 29942307]
  52. Am J Pathol. 2003 Dec;163(6):2347-70 [PMID: 14633608]
  53. Vet Pathol. 2023 Jul;60(4):473-487 [PMID: 37170900]
  54. J Virol. 2023 May 31;97(5):e0188822 [PMID: 36975793]
  55. PLoS Negl Trop Dis. 2019 Dec 11;13(12):e0007819 [PMID: 31825972]
  56. Expert Opin Ther Targets. 2023 Jul-Dec;27(9):779-791 [PMID: 37705214]
  57. Blood. 2007 Jun 15;109(12):5337-45 [PMID: 17339424]
  58. Zool Res. 2018 Jan 18;39(1):15-24 [PMID: 29511141]
  59. Hepatology. 2009 Jan;49(1):287-96 [PMID: 19111020]
  60. Curr Oncol. 2022 Apr 24;29(5):3044-3060 [PMID: 35621637]
  61. J Leukoc Biol. 2021 Feb;109(2):309-325 [PMID: 32441445]
  62. J Infect Dis. 2016 Oct 15;214(suppl 3):S263-S267 [PMID: 27284090]

MeSH Term

Animals
Hemorrhagic Fever, Ebola
Liver
Macaca fascicularis
Ebolavirus
Disease Models, Animal
Macrophage Activation
Lung
Macrophages, Alveolar
Macrophages
Male

Word Cloud

Created with Highcharts 10.0.0EbolaliverexpressionmacrophageviruslungmacrophagesdiseasehepaticactivationcomparedHepaticinflammatorypulmonaryterminalcynomolgusmacaqueschallengedproteinquantifiedprofileCD163associatedgeneIDO1significantmacaqueBackground:responsecontributessevereinjuryhumansObjective:soughtdefinestatuspopulationsMethods:tissueEBOV-infecteduninfectedcontrolviaconjunctivalrouteGeneusingnCounterGeoMxDigitalSpatialProfilingplatformsMacrophagephenotypesdigitalpathologyanalysisResults:EBOV-infectedgroupdemonstratedmixedinflammatory/non-inflammatoryupregulationsyndromealsoshoweddifferentialsetsrelatedmonocyte/macrophagedifferentiationantigenpresentationTcelldecreasedMHC-IIalleleMoreoverenrichedgenesproteinstargetableknownimmunomodulatorytherapeuticsincludingS100A9CTLA-4statisticallydifferencesM1/M2observedcontrolschangesoccurredpronouncedConclusion:datademonstrateconjunctivallymayexpressuniquemodelsmacrophage-relatedpharmacologicallydruggabletargetsexpressedactivitymucosalchallengemodelMAC387

Similar Articles

Cited By

No available data.