Filbertone-Induced Nrf2 Activation Ameliorates Neuronal Damage via Increasing BDNF Expression.

Jeong Heon Gong, Chu-Sook Kim, Jeongmin Park, Soeun Kang, Yumi Jang, Min-Seon Kim, Hun Taeg Chung, Yeonsoo Joe, Rina Yu
Author Information
  1. Jeong Heon Gong: College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
  2. Chu-Sook Kim: Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
  3. Jeongmin Park: College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
  4. Soeun Kang: Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
  5. Yumi Jang: Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
  6. Min-Seon Kim: Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
  7. Hun Taeg Chung: College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
  8. Yeonsoo Joe: College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea. joeyeonsoo@dhu.ac.kr.
  9. Rina Yu: Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea. rinayu@ulsan.ac.kr.

Abstract

Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson's Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including BDNF, Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP, where it was observed to counteract PA and MPTP/MPP-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.

Keywords

References

  1. J Clin Med. 2020 Jan 17;9(1): [PMID: 31963575]
  2. Neurobiol Aging. 2019 Feb;74:121-134 [PMID: 30448612]
  3. PLoS One. 2018 Apr 26;13(4):e0191299 [PMID: 29698491]
  4. Front Cell Neurosci. 2022 Jan 21;15:787258 [PMID: 35126058]
  5. Front Cell Neurosci. 2021 Oct 13;15:722028 [PMID: 34720877]
  6. Acta Neurobiol Exp (Wars). 2021;81(4):314-327 [PMID: 35014981]
  7. Int J Mol Sci. 2021 Mar 30;22(7): [PMID: 33808272]
  8. Neural Regen Res. 2017 Apr;12(4):549-557 [PMID: 28553325]
  9. Nutr Rev. 2022 Feb 10;80(3):392-399 [PMID: 34010412]
  10. BMC Res Notes. 2020 Feb 21;13(1):83 [PMID: 32085720]
  11. Recent Pat CNS Drug Discov. 2012 Dec;7(3):218-29 [PMID: 22742419]
  12. Antioxidants (Basel). 2019 May 05;8(5): [PMID: 31060341]
  13. J Agric Food Chem. 2018 Oct 31;66(43):11221-11226 [PMID: 30303012]
  14. Transl Psychiatry. 2016 Oct 4;6(10):e907 [PMID: 27701410]
  15. Int J Mol Sci. 2022 Jun 19;23(12): [PMID: 35743271]
  16. Neurobiol Aging. 2014 Aug;35(8):1821-32 [PMID: 24630364]
  17. N Engl J Med. 2003 Apr 3;348(14):1356-64 [PMID: 12672864]
  18. Neurobiol Dis. 2012 Jan;45(1):529-38 [PMID: 21971528]
  19. Cell Metab. 2021 Aug 3;33(8):1546-1564 [PMID: 34348099]
  20. J Neuroinflammation. 2022 May 14;19(1):110 [PMID: 35568928]
  21. Circ Res. 2007 Oct 26;101(9):919-27 [PMID: 17823375]
  22. Eur J Neurosci. 2022 Feb;55(3):873-891 [PMID: 34989050]
  23. Bioeng Transl Med. 2022 Aug 03;8(1):e10367 [PMID: 36684083]
  24. Bosn J Basic Med Sci. 2021 Aug 01;21(4):422-433 [PMID: 33357211]
  25. Transl Neurodegener. 2022 Jan 28;11(1):4 [PMID: 35090576]
  26. Mol Metab. 2017 Jan 28;6(4):366-373 [PMID: 28377875]
  27. Int J Obes (Lond). 2017 Jan;41(1):149-158 [PMID: 27773938]
  28. Int J Mol Sci. 2022 Oct 25;23(21): [PMID: 36361643]
  29. Int J Mol Sci. 2020 Feb 10;21(3): [PMID: 32050617]
  30. Aging Dis. 2015 Oct 01;6(5):331-41 [PMID: 26425388]
  31. Pharmacol Ther. 2013 May;138(2):155-75 [PMID: 23348013]
  32. Sci Rep. 2017 Sep 19;7(1):11883 [PMID: 28928429]
  33. Glia. 2007 Sep;55(12):1251-1262 [PMID: 17659524]
  34. Front Pharmacol. 2021 Nov 16;12:754502 [PMID: 34867367]
  35. Nat Neurosci. 2020 Dec;23(12):1456-1468 [PMID: 32839617]
  36. J Nutr Biochem. 2023 Aug;118:109325 [PMID: 36958418]
  37. Transl Neurodegener. 2020 Nov 26;9(1):42 [PMID: 33239064]
  38. Front Physiol. 2024 Feb 20;15:1352305 [PMID: 38444767]
  39. Mol Cell Biol. 2003 Oct;23(20):7198-209 [PMID: 14517290]
  40. Lancet Neurol. 2020 Mar;19(3):255-265 [PMID: 31813850]
  41. J Neuroinflammation. 2013 Jan 30;10:16 [PMID: 23363775]
  42. Front Aging Neurosci. 2020 Dec 07;12:593572 [PMID: 33364933]
  43. Front Physiol. 2019 Apr 26;10:486 [PMID: 31105589]
  44. Acta Biochim Biophys Sin (Shanghai). 2019 Sep 6;51(9):969-971 [PMID: 31392317]
  45. Hum Mol Genet. 2012 Jul 15;21(14):3173-92 [PMID: 22513881]
  46. Acta Pharmacol Sin. 2022 Apr;43(4):829-839 [PMID: 34272506]
  47. Trends Endocrinol Metab. 2021 Jul;32(7):488-499 [PMID: 33958275]
  48. Cell Stem Cell. 2023 May 4;30(5):512-529 [PMID: 37084729]
  49. FEBS J. 2018 Oct;285(19):3576-3590 [PMID: 29323772]
  50. Transl Psychiatry. 2021 Feb 24;11(1):140 [PMID: 33627628]
  51. Aging Dis. 2021 Dec 1;12(8):2003-2015 [PMID: 34881082]
  52. Nutrients. 2019 Jul 30;11(8): [PMID: 31366045]
  53. J Comp Neurol. 1971 Dec;143(4):481-90 [PMID: 4945394]
  54. Nature. 2023 Dec;624(7991):317-332 [PMID: 38092916]
  55. Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):768-73 [PMID: 16407140]

Grants

  1. RS-2023-00249424/National Research Foundation of Korea
  2. RS-2023-00244373/National Research Foundation of Korea
  3. 2018R1A5A2025272/National Research Foundation of Korea

MeSH Term

Animals
Brain-Derived Neurotrophic Factor
NF-E2-Related Factor 2
Humans
Mice
Mice, Inbred C57BL
Male
Neuroprotective Agents
Cell Line, Tumor
Neurons

Chemicals

Brain-Derived Neurotrophic Factor
NF-E2-Related Factor 2
Neuroprotective Agents
Nfe2l2 protein, mouse
Bdnf protein, mouse

Word Cloud

Created with Highcharts 10.0.0factorsfilbertoneNrf2neurotrophicfactorcellsBDNFNeurotrophiceffectsneuronalIncreasingneurotoxicitystudytherapeuticneurodegenerationerythroid2-related2signalingpathwayexpressioncellFactormouseneuroinflammationactivationinducedmodelsneuroprotectivePAupregulationoxygenase-1endogenousproteinspromotesurvivalvariousevidencesuggestedkeyrolebrain-deriveddopaminergicassociatedParkinson'sDiseasePDexplorespotentialbioactivecompoundfoundhazelnutsfocusingnuclearmarkedlyelevatedincludingGlialline-DerivedGDNFNerveGrowthNGFhumanneuroblastomaSH-SY5YastrocyteC8-D1AhypothalamusmHypoE-N1Moreovereffectivelycounteredreverseddeclinehigh-fatdietHFDvalidatedpalmiticacidneurotoxinMPTP/MPPobservedcounteractMPTP/MPP-induceddecreasesviabilityprimarilysubsequenthemedeficiencynegatedMPTP-treatedmiceConsequentlyfindingsuggestsnovelagentneurodegenerativediseasesenhancingresilienceFilbertone-InducedActivationAmelioratesNeuronalDamageviaExpressionFilbertoneHemeNeuroinflammationNuclearParkinson’sdisease

Similar Articles

Cited By