Revealing the Effect of Crystalline Self-Assembled Monolayer in Biomimetic Photosynapse with Ultraviolet Light Protection Capability.

Ya-Shuan Wu, Wei-Cheng Chen, Yi-Sa Lin, Cheng-Liang Liu, Yan-Cheng Lin, Wen-Chang Chen
Author Information
  1. Ya-Shuan Wu: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
  2. Wei-Cheng Chen: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
  3. Yi-Sa Lin: Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10607, Taiwan.
  4. Cheng-Liang Liu: Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan. ORCID
  5. Yan-Cheng Lin: Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan. ORCID
  6. Wen-Chang Chen: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan. ORCID

Abstract

The research on photonic synapses holds immense promise for various applications, such as robotics and artificial intelligence. Pursuing lightweight, miniaturized, and low-energy consumption designs is crucial for enhancing efficiency and adaptability in evolving technological environments. To achieve this goal, this work designs a series of conjugated self-assembled molecules with photoactive pyrene, benzo-naphthol-thiophene (BNT), perylene, and benzothieno-benzothiophene cores to develop ultrathin (<3 nm) charge-trapping self-assembled monolayers (SAMs). The highly crystalline BNT forms an orderly arrangement with the semiconducting channel, further exhibiting distinguished current contrast stability (���10) and synaptic features, including paired-pulse facilitation (153%), ultralow energy consumption (28.9 aJ), and short/long-term plasticity. The device successfully demonstrates the emulation of human learning behavior and the self-protection mechanism against ultraviolet radiation utilizing crystalline and conjugated SAMs with different charge traps. Additionally, the capability of background denoising is evidenced by the high recognition accuracy (���90%) for the preprocessed images. This study not only strengthens the diverse functionality of SAMs in optoelectronic devices but also highlights the significant potential of device miniaturization for biomimetic applications, making it a crucial contribution to the field.

Keywords

References

  1. Nanoscale. 2023 Apr 27;15(16):7450-7459 [PMID: 37013963]
  2. Nat Commun. 2015 Apr 10;6:6828 [PMID: 25857435]
  3. Adv Mater. 2018 Sep;30(38):e1802883 [PMID: 30063261]
  4. Sci Adv. 2024 Apr 19;10(16):eadn4524 [PMID: 38630830]
  5. Nano Lett. 2020 Oct 14;20(10):7793-7801 [PMID: 32960612]
  6. Adv Sci (Weinh). 2024 Jun;11(24):e2309876 [PMID: 38647376]
  7. Adv Mater. 2022 May;34(18):e2200380 [PMID: 35243701]
  8. Nat Commun. 2023 Jan 16;14(1):247 [PMID: 36646674]
  9. ACS Appl Mater Interfaces. 2021 Jul 7;13(26):31236-31247 [PMID: 34170098]
  10. Nano Lett. 2023 Dec 27;23(24):11662-11668 [PMID: 38064458]
  11. ACS Nano. 2021 Jan 26;15(1):1497-1508 [PMID: 33372769]
  12. J Am Chem Soc. 2015 Feb 25;137(7):2674-9 [PMID: 25650811]
  13. Chem Mater. 2023 Jul 20;35(15):5777-5783 [PMID: 37576586]
  14. ACS Appl Mater Interfaces. 2024 Dec 11;16(49):66948-66960 [PMID: 38573883]
  15. ACS Appl Mater Interfaces. 2024 Feb 14;16(6):7500-7511 [PMID: 38300744]
  16. Small. 2018 Jun;14(25):e1800756 [PMID: 29806210]
  17. ACS Appl Mater Interfaces. 2019 May 8;11(18):16749-16757 [PMID: 31025562]
  18. ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18055-18064 [PMID: 37000192]
  19. ACS Appl Mater Interfaces. 2015 May 13;7(18):9767-75 [PMID: 25875747]
  20. Adv Sci (Weinh). 2023 Feb;10(4):e2205694 [PMID: 36461698]

Word Cloud

Created with Highcharts 10.0.0self-assembledSAMsdevicesynapsesapplicationsartificialconsumptiondesignscrucialconjugatedBNTmonolayerscrystallineminiaturizationbiomimeticresearchphotonicholdsimmensepromisevariousroboticsintelligencePursuinglightweightminiaturizedlow-energyenhancingefficiencyadaptabilityevolvingtechnologicalenvironmentsachievegoalworkseriesmoleculesphotoactivepyrenebenzo-naphthol-thiopheneperylenebenzothieno-benzothiophenecoresdevelopultrathin<3nmcharge-trappinghighlyformsorderlyarrangementsemiconductingchannelexhibitingdistinguishedcurrentcontraststability���10synapticfeaturesincludingpaired-pulsefacilitation153%ultralowenergy289aJshort/long-termplasticitysuccessfullydemonstratesemulationhumanlearningbehaviorself-protectionmechanismultravioletradiationutilizingdifferentchargetrapsAdditionallycapabilitybackgrounddenoisingevidencedhighrecognitionaccuracy���90%preprocessedimagesstudystrengthensdiversefunctionalityoptoelectronicdevicesalsohighlightssignificantpotentialmakingcontributionfieldRevealingEffectCrystallineSelf-AssembledMonolayerBiomimeticPhotosynapseUltravioletLightProtectionCapabilityfield-effecttransistors

Similar Articles

Cited By

No available data.