Application of rare earth elements in dual-modality molecular probes.

Jie-Fang He, Wen-Wen Yang, Wen-Xuan Quan, Yue-Chun Yang, Zhengwei Zhang, Qing-Ying Luo
Author Information
  1. Jie-Fang He: School of Life Sciences, Guizhou Normal University Guiyang 550025 China. ORCID
  2. Wen-Wen Yang: School of Life Sciences, Guizhou Normal University Guiyang 550025 China.
  3. Wen-Xuan Quan: Provincial Key Laboratory of Mountainous Ecological Environment, Guizhou Normal University Guiyang 550025 China.
  4. Yue-Chun Yang: Guizhou University of Traditional Chinese Medicine Guiyang 550025 China.
  5. Zhengwei Zhang: School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China Luoqingying@szpu.edu.cn.
  6. Qing-Ying Luo: School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China Luoqingying@szpu.edu.cn. ORCID

Abstract

The unique 4f subshell electronic structure of rare earth elements endows them with exceptional properties in electrical, magnetic, and optical domains. These properties include prolonged fluorescence lifetimes, large Stokes shifts, distinctive spectral bands, and strong resistance to photobleaching, making them ideal for the synthesis of molecular probes. Each imaging technique possesses unique advantages and specific applicabilities but also inherent limitations due to its operational principles. Dual-modality molecular probes effectively address these limitations, particularly in applications involving high-resolution Magnetic Resonance Imaging (MRI) such as MRI/OI, MRI/PET, MRI/CT, and MRI/US. This review summarizes the applications, advantages, challenges, and current research status of rare earth elements in these four dual imaging modalities, providing a theoretical basis for the future development and application of rare earth elements in the field of dual-modality molecular probes.

References

  1. Adv Healthc Mater. 2018 Oct;7(19):e1800202 [PMID: 30118580]
  2. Int J Nanomedicine. 2018 Oct 09;13:6249-6264 [PMID: 30349248]
  3. Talanta. 2017 Apr 1;165:161-166 [PMID: 28153236]
  4. Magn Reson Med. 2010 Feb;63(2):290-6 [PMID: 20025068]
  5. Chem Sci. 2023 Nov 21;14(48):14039-14061 [PMID: 38098720]
  6. Chem Rev. 2010 May 12;110(5):2729-55 [PMID: 20151630]
  7. Biosensors (Basel). 2022 May 17;12(5): [PMID: 35624643]
  8. Small. 2019 Aug;15(32):e1804969 [PMID: 30761729]
  9. Theranostics. 2021 Nov 2;11(20):10091-10113 [PMID: 34815806]
  10. J Am Chem Soc. 2019 Aug 7;141(31):12413-12418 [PMID: 31309834]
  11. Pediatr Radiol. 2019 Apr;49(4):469-478 [PMID: 30923878]
  12. Theranostics. 2021 Aug 7;11(18):8706-8737 [PMID: 34522208]
  13. Light Sci Appl. 2022 Sep 2;11(1):260 [PMID: 36055990]
  14. ACS Appl Mater Interfaces. 2018 May 30;10(21):17732-17741 [PMID: 29737836]
  15. Sci Rep. 2015 Feb 24;5:8549 [PMID: 25707374]
  16. Small. 2016 Feb 3;12(5):556-76 [PMID: 26680328]
  17. ACS Appl Mater Interfaces. 2019 Nov 6;11(44):41069-41081 [PMID: 31599161]
  18. Cell Chem Biol. 2020 Aug 20;27(8):921-936 [PMID: 32735780]
  19. J Nucl Med. 2018 Mar;59(3):390-395 [PMID: 29301927]
  20. Colloids Surf B Biointerfaces. 2020 Dec;196:111278 [PMID: 32835889]
  21. Curr Opin Chem Biol. 2018 Aug;45:113-120 [PMID: 29631121]
  22. Nanoscale. 2023 Dec 14;15(48):19546-19556 [PMID: 37982139]
  23. Inorg Chem. 2019 Oct 21;58(20):13619-13630 [PMID: 31136161]
  24. Bioconjug Chem. 2015 Mar 18;26(3):549-58 [PMID: 25615011]
  25. ACS Sens. 2022 Oct 28;7(10):2857-2864 [PMID: 36190830]
  26. Chem Soc Rev. 2017 Oct 16;46(20):6379-6419 [PMID: 28930330]
  27. J Mater Chem B. 2015 Mar 21;3(11):2241-2276 [PMID: 32262055]
  28. CA Cancer J Clin. 2022 Jul;72(4):333-352 [PMID: 34902160]
  29. Anal Chem. 2018 Feb 6;90(3):1992-2000 [PMID: 29293314]
  30. Sci Rep. 2019 Feb 20;9(1):2341 [PMID: 30787475]
  31. ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25511-25518 [PMID: 29989405]
  32. Clin Radiol. 2007 Jun;62(6):507-17 [PMID: 17467387]
  33. Drug Deliv. 2018 Nov;25(1):178-186 [PMID: 29301434]
  34. Anal Chim Acta. 2012 Nov 2;751:1-23 [PMID: 23084048]
  35. Int Rev Neurobiol. 2018;141:97-128 [PMID: 30314608]
  36. Chem Soc Rev. 2023 Aug 14;52(16):5706-5743 [PMID: 37525607]
  37. Bioelectrochemistry. 2019 Oct;129:278-285 [PMID: 31254805]
  38. Cancer Treat Rev. 2018 Jul;68:86-93 [PMID: 29936015]
  39. Invest Radiol. 2021 Jan;56(1):20-34 [PMID: 33074931]
  40. Nature. 2008 Apr 3;452(7187):580-9 [PMID: 18385732]
  41. Acta Biomater. 2022 Aug;148:22-43 [PMID: 35675891]
  42. Chem Commun (Camb). 2021 Nov 2;57(87):11443-11456 [PMID: 34647938]
  43. Pharmaceuticals (Basel). 2018 Jul 19;11(3): [PMID: 30029472]
  44. Mol Imaging. 2010 Jun;9(3):117-27 [PMID: 20487678]
  45. Eur J Pharm Sci. 2022 Jul 1;174:106207 [PMID: 35577179]
  46. Trends Mol Med. 2010 Nov;16(11):508-15 [PMID: 20851684]
  47. Invest Radiol. 2020 Sep;55(9):545-555 [PMID: 32209817]
  48. Nanomaterials (Basel). 2021 Feb 01;11(2): [PMID: 33535481]
  49. Molecules. 2020 Jan 01;25(1): [PMID: 31906398]
  50. RSC Adv. 2020 Oct 16;10(63):38252-38259 [PMID: 35517567]
  51. Abdom Radiol (NY). 2018 Apr;43(4):786-799 [PMID: 29492605]
  52. Chem Soc Rev. 2007 Apr;36(4):579-91 [PMID: 17387407]
  53. Contrast Media Mol Imaging. 2019 May 5;2019:1845637 [PMID: 31191182]
  54. J Funct Biomater. 2022 Jun 22;13(3): [PMID: 35893455]
  55. ACS Biomater Sci Eng. 2020 Nov 9;6(11):6405-6414 [PMID: 33449639]
  56. Nanomedicine (Lond). 2017 Sep;12(18):2223-2231 [PMID: 28814136]
  57. Acc Chem Res. 2012 Oct 16;45(10):1817-27 [PMID: 22950890]
  58. Nat Rev Drug Discov. 2003 Feb;2(2):123-31 [PMID: 12563303]
  59. Magn Reson Imaging. 2012 Nov;30(9):1342-56 [PMID: 22795930]
  60. Dalton Trans. 2018 Aug 21;47(31):10646-10653 [PMID: 29808225]
  61. Talanta. 2021 Jun 1;228:122245 [PMID: 33773745]
  62. Anal Methods. 2023 Nov 9;15(43):5731-5753 [PMID: 37882318]
  63. Kidney360. 2020 Jun;1(6):561-568 [PMID: 34423308]
  64. ACS Appl Mater Interfaces. 2019 May 1;11(17):15212-15221 [PMID: 30964632]
  65. ACS Appl Mater Interfaces. 2019 Jun 19;11(24):21343-21352 [PMID: 31140277]
  66. ACS Nano. 2013 Aug 27;7(8):7227-40 [PMID: 23879437]
  67. Magn Reson Imaging. 2020 May;68:113-120 [PMID: 32032662]
  68. Nanoscale. 2015 Oct 14;7(38):15680-8 [PMID: 26350491]
  69. J Phys Chem A. 2020 Sep 24;124(38):7678-7684 [PMID: 32693596]
  70. Top Curr Chem (Cham). 2021 Feb 7;379(2):12 [PMID: 33550491]
  71. J Biomed Nanotechnol. 2019 Feb 1;15(2):352-362 [PMID: 30596557]
  72. Invest Radiol. 2020 Jan;55(1):8-19 [PMID: 31567618]
  73. Acc Chem Res. 2009 Apr 21;42(4):542-52 [PMID: 19323456]
  74. Drug Deliv. 2018 Nov;25(1):353-363 [PMID: 29366349]
  75. Theranostics. 2018 Apr 18;8(11):2954-2973 [PMID: 29896296]
  76. Contrast Media Mol Imaging. 2018 Jun 5;2018:1382183 [PMID: 29967571]
  77. Cell Physiol Biochem. 2018;49(1):271-281 [PMID: 30138940]
  78. Acta Pharm Sin B. 2018 May;8(3):320-338 [PMID: 29881672]
  79. Nanoscale. 2023 Jun 30;15(25):10513-10528 [PMID: 37313649]
  80. Int Rev Neurobiol. 2018;141:31-76 [PMID: 30314602]
  81. ACS Appl Bio Mater. 2021 Jul 19;4(7):5435-5448 [PMID: 35006725]
  82. Int J Nanomedicine. 2022 Jan 01;16:8465-8483 [PMID: 35002239]
  83. J Nanosci Nanotechnol. 2016 Mar;16(3):2201-9 [PMID: 27455619]
  84. ACS Appl Mater Interfaces. 2015 Aug 19;7(32):17765-75 [PMID: 26147906]
  85. Pharmaceutics. 2021 Sep 30;13(10): [PMID: 34683886]
  86. Sensors (Basel). 2021 Apr 01;21(7): [PMID: 33915779]
  87. Future Med Chem. 2018 Mar 1;10(6):639-661 [PMID: 29412006]
  88. EJNMMI Phys. 2021 Aug 26;8(1):62 [PMID: 34436671]
  89. Asian J Pharm Sci. 2021 Nov;16(6):704-737 [PMID: 35027950]
  90. Nanomaterials (Basel). 2022 Feb 09;12(4): [PMID: 35214911]
  91. Cancer. 2019 Jun 1;125(11):1815-1822 [PMID: 30707773]
  92. Nanoscale. 2018 Jul 13;10(27):12935-12956 [PMID: 29953157]
  93. Chem Rev. 2012 Feb 8;112(2):1126-62 [PMID: 21688849]
  94. Pflugers Arch. 2013 Mar;465(3):347-59 [PMID: 23412659]
  95. mBio. 2019 Oct 29;10(5): [PMID: 31662452]
  96. J Mater Chem B. 2022 Nov 3;10(42):8596-8615 [PMID: 36264053]
  97. Chem Soc Rev. 2018 Jun 18;47(12):4258-4278 [PMID: 29725670]
  98. Theranostics. 2018 Nov 29;8(22):6210-6232 [PMID: 30613293]
  99. Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202317728 [PMID: 38376889]
  100. Org Biomol Chem. 2013 Feb 13;11(10):1683-90 [PMID: 23360969]
  101. Nanoscale. 2022 Aug 11;14(31):11461-11470 [PMID: 35904370]
  102. Pediatr Radiol. 2010 May;40(5):681-6 [PMID: 19967534]
  103. Contrast Media Mol Imaging. 2015 Jul-Aug;10(4):309-19 [PMID: 25483609]
  104. Nanoscale. 2022 Dec 8;14(47):17483-17499 [PMID: 36413075]

Word Cloud

Created with Highcharts 10.0.0rareearthelementsmolecularprobesuniquepropertiesimagingadvantageslimitationsapplicationsdual-modality4fsubshellelectronicstructureendowsexceptionalelectricalmagneticopticaldomainsincludeprolongedfluorescencelifetimeslargeStokesshiftsdistinctivespectralbandsstrongresistancephotobleachingmakingidealsynthesistechniquepossessesspecificapplicabilitiesalsoinherentdueoperationalprinciplesDual-modalityeffectivelyaddressparticularlyinvolvinghigh-resolutionMagneticResonanceImagingMRIMRI/OIMRI/PETMRI/CTMRI/USreviewsummarizeschallengescurrentresearchstatusfourdualmodalitiesprovidingtheoreticalbasisfuturedevelopmentapplicationfieldApplication

Similar Articles

Cited By