increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation .

Nuzhat Rahman, M Firoz Mian, Christina L Hayes, Aisha Nazli, Charu Kaushic
Author Information
  1. Nuzhat Rahman: Department of Medicine, McMaster University, Hamilton, ON, Canada.
  2. M Firoz Mian: Department of Medicine, McMaster University, Hamilton, ON, Canada.
  3. Christina L Hayes: Department of Medicine, McMaster University, Hamilton, ON, Canada.
  4. Aisha Nazli: Department of Medicine, McMaster University, Hamilton, ON, Canada.
  5. Charu Kaushic: Department of Medicine, McMaster University, Hamilton, ON, Canada.

Abstract

Introduction: Clinically, a dysbiotic vaginal microbiota (VMB) colonized with anaerobic species such as has been linked to increased susceptibility to viral sexually transmitted infections (STIs) such as Herpes Simplex Virus Type 2 (HSV-2). The mechanism is poorly understood due to the lack of small animal models.
Methods: Mice were inoculated with 10 CFU of the eubiotic bacteria , the dysbiotic bacteria , or PBS as a negative control every 48 h for ten days. On day ten, mice were inoculated with 10 PFU WT HSV-2 333 and survival, pathology, and viral titers were assessed. To elucidate changes in the vaginal microenvironment following bacterial inoculations, vaginal tissue and washes were collected following ten days of inoculations. To assess barrier integrity, tissue was fixed and stained for the barrier protein Desmoglein-1 (DSG-1). To evaluate the immune microenvironment, tissue was processed for flow cytometry to examine tissue-resident T cells and cytokine production by T cells. Vaginal washes were used for multiplex cytokine/chemokine analysis.
Results: inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and inoculated mice. The vaginal epithelium of inoculated mice showed decreased DSG-1 staining compared to other groups, indicating compromised barrier function. Decreased total numbers of CD4+ and CD8+ T cells expressing activated mucosal immune markers CD44, CD69, and CD103 were observed in the vaginal tract of inoculated mice. They also showed increased proportions of T cells expressing inflammatory cytokines TNF-α and IFN-γ, while inoculated mice had increased proportions and absolute counts of T cells expressing the regulatory cytokine IL-10. In the multiplex assay, vaginal washes from mice had increased inflammatory cytokines and chemokines compared to and PBS groups.
Discussion: These results suggest inoculation may be increasing HSV-2 infection by disrupting the epithelial barrier, decreasing protective immune responses and increasing tissue inflammation in the vaginal tract.

Keywords

References

  1. Dis Model Mech. 2018 Aug 28;11(9): [PMID: 30154116]
  2. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 [PMID: 20534435]
  3. Am J Obstet Gynecol. 2008 Jan;198(1):132.e1-7 [PMID: 17714681]
  4. Immunity. 2015 May 19;42(5):965-76 [PMID: 25992865]
  5. PLoS Pathog. 2017 Mar 30;13(3):e1006238 [PMID: 28358889]
  6. J Biol Chem. 2013 Apr 26;288(17):12067-79 [PMID: 23479734]
  7. Front Cell Infect Microbiol. 2023 Dec 13;13:1307451 [PMID: 38156321]
  8. BMC Microbiol. 2018 Nov 26;18(1):197 [PMID: 30477439]
  9. Sci Rep. 2016 Jun 29;6:29024 [PMID: 27354249]
  10. Sci Rep. 2023 Nov 16;13(1):20065 [PMID: 37973920]
  11. Cell Mol Life Sci. 2003 Sep;60(9):1872-90 [PMID: 14523549]
  12. J Hyg (Lond). 1938 Nov;38(6):732-49 [PMID: 20475467]
  13. Sex Transm Infect. 2020 Feb;96(1):3-9 [PMID: 31197065]
  14. Sex Transm Dis. 2003 May;30(5):405-10 [PMID: 12916131]
  15. Immunohorizons. 2020 Feb 11;4(2):72-81 [PMID: 32047094]
  16. Mucosal Immunol. 2016 Nov;9(6):1571-1583 [PMID: 27007679]
  17. Int J Mol Sci. 2020 Jan 04;21(1): [PMID: 31947962]
  18. J Vis Exp. 2014 Nov 04;(93):e52065 [PMID: 25407402]
  19. Front Reprod Health. 2022 Dec 06;4:992176 [PMID: 36560972]
  20. Sex Transm Infect. 2007 Apr;83(2):87-90 [PMID: 16916882]
  21. J Immunol Res. 2016;2016:9747480 [PMID: 26989700]
  22. J Med Food. 2019 Oct;22(10):1022-1031 [PMID: 31381476]
  23. J Int AIDS Soc. 2019 Aug;22 Suppl 6:e25346 [PMID: 31468677]
  24. Sci Rep. 2021 Feb 16;11(1):3894 [PMID: 33594113]
  25. Eur J Immunol. 2017 Jun;47(6):946-953 [PMID: 28475283]
  26. J Leukoc Biol. 1998 Oct;64(4):494-502 [PMID: 9766630]
  27. Front Cell Infect Microbiol. 2020 Oct 06;10:570025 [PMID: 33123496]
  28. Viruses. 2009 Dec;1(3):979-1002 [PMID: 21994578]
  29. Am J Obstet Gynecol. 1993 Mar;168(3 Pt 1):988-94 [PMID: 8456914]
  30. Mucosal Immunol. 2023 Jun;16(3):341-356 [PMID: 37121385]
  31. Curr Microbiol. 2022 Feb 7;79(3):84 [PMID: 35128579]
  32. J Exp Med. 2005 Oct 17;202(8):1051-61 [PMID: 16216886]
  33. Cell Mol Immunol. 2014 Sep;11(5):410-27 [PMID: 24976268]
  34. Crit Rev Immunol. 2012;32(1):23-63 [PMID: 22428854]
  35. JAMA. 2001 Jun 27;285(24):3100-6 [PMID: 11427138]
  36. Immunity. 2017 Jan 17;46(1):29-37 [PMID: 28087240]
  37. Reprod Sci. 2014 Apr;21(4):538-42 [PMID: 24023032]
  38. J Virol. 2020 Dec 9;95(1): [PMID: 33028712]
  39. Nat Med. 2019 Dec;25(12):1822-1832 [PMID: 31806905]
  40. PLoS One. 2013;8(3):e59539 [PMID: 23527214]
  41. Int Immunopharmacol. 2011 Nov;11(11):1758-65 [PMID: 21798373]
  42. Clin Infect Dis. 2003 Aug 1;37(3):319-25 [PMID: 12884154]
  43. Front Cell Infect Microbiol. 2020 Apr 24;10:168 [PMID: 32391287]
  44. Infect Immun. 2019 Mar 25;87(4): [PMID: 30692180]
  45. Dis Model Mech. 2019 Oct 23;12(10): [PMID: 31537512]
  46. Bull World Health Organ. 2020 May 01;98(5):315-329 [PMID: 32514197]
  47. PLoS One. 2018 Jan 18;13(1):e0191524 [PMID: 29346438]
  48. Sci Rep. 2020 Feb 6;10(1):1978 [PMID: 32029862]
  49. Int J Mol Sci. 2019 Jul 11;20(14): [PMID: 31373310]
  50. Fertil Res Pract. 2020 Mar 14;6:5 [PMID: 32190339]
  51. J Infect Dis. 2022 Sep 4;226(4):644-654 [PMID: 32822500]
  52. Biol Reprod. 2011 Jul;85(1):97-104 [PMID: 21471299]
  53. BMC Infect Dis. 2015 Feb 21;15:86 [PMID: 25887567]
  54. Sci Rep. 2020 Apr 10;10(1):6196 [PMID: 32277092]
  55. Bio Protoc. 2017 Jul 05;7(13):e2383 [PMID: 34541121]
  56. Lancet Glob Health. 2015 Aug;3(8):e478-e486 [PMID: 26094162]
  57. J Neurovirol. 2003 Dec;9(6):594-602 [PMID: 14602572]
  58. Pharmaceutics. 2020 Jun 04;12(6): [PMID: 32512836]
  59. Viruses. 2021 Feb 25;13(3): [PMID: 33668777]
  60. J Virol. 2003 Apr;77(8):4558-65 [PMID: 12663762]
  61. Microb Cell Fact. 2020 Nov 7;19(1):203 [PMID: 33160356]
  62. Nutrients. 2017 May 23;9(6): [PMID: 28545241]
  63. Infect Immun. 2017 Dec 19;86(1): [PMID: 29038128]
  64. PLoS One. 2014 May 07;9(5):e96659 [PMID: 24805362]
  65. Sex Transm Infect. 2019 Feb;95(1):5-12 [PMID: 30018088]
  66. Am J Obstet Gynecol. 2002 Nov;187(5):1263-6 [PMID: 12439517]
  67. J Virol. 2005 Mar;79(5):3107-16 [PMID: 15709030]
  68. PLoS Pathog. 2016 Sep 22;12(9):e1005889 [PMID: 27656899]
  69. Sci Rep. 2017 Nov 13;7(1):15475 [PMID: 29133803]
  70. Front Cell Infect Microbiol. 2021 Apr 07;11:631972 [PMID: 33898328]
  71. Microorganisms. 2022 Feb 20;10(2): [PMID: 35208925]
  72. Front Immunol. 2015 Apr 21;6:182 [PMID: 25954275]
  73. Planta Med. 2011 Dec;77(18):1996-2002 [PMID: 21830186]

MeSH Term

Animals
Female
Herpesvirus 2, Human
Herpes Genitalis
Vagina
Mice
Gardnerella vaginalis
Cytokines
Mice, Inbred C57BL
Disease Models, Animal
Inflammation

Chemicals

Cytokines

Word Cloud

Created with Highcharts 10.0.0vaginalinoculatedmicebarrierincreasedHSV-2TcellstissueviralPBStenwashesintegrityimmuneexpressingincreasinginflammationdysbioticmicrobiotaVMBmodels10bacteriadayssurvivalpathologytitersmicroenvironmentfollowingbacterialinoculationsDSG-1cytokinemultiplexdecreasedshowedcomparedgroupstractproportionsinflammatorycytokinesinfectiondecreasingIntroduction:ClinicallycolonizedanaerobicspecieslinkedsusceptibilitysexuallytransmittedinfectionsSTIsHerpesSimplexVirusType2mechanismpoorlyunderstoodduelacksmallanimalMethods:MiceCFUeubioticnegativecontrolevery48hdayPFUWT333assessedelucidatechangescollectedassessfixedstainedproteinDesmoglein-1evaluateprocessedflowcytometryexaminetissue-residentproductionVaginalusedcytokine/chemokineanalysisResults:infectedsignificantlyrateshigherepitheliumstainingindicatingcompromisedfunctionDecreasedtotalnumbersCD4+CD8+activatedmucosalmarkersCD44CD69CD103observedalsoTNF-αIFN-γabsolutecountsregulatoryIL-10assaychemokinesDiscussion:resultssuggestinoculationmaydisruptingepithelialprotectiveresponsesincreasesLactobacillusvaginosisfemalereproductivehealthherpessimplexvirusmouse

Similar Articles

Cited By