Dynamics of cytokine and antibody responses in community versus hospital SARS-CoV-2 infections.

Tulika Singh, Andrew N Macintyre, Thomas W Burke, Jack Anderson, Elizabeth Petzold, Erica L Stover, Matthew J French, Thomas H Oguin, Todd Demarco, Micah T McClain, Emily R Ko, Lawrence P Park, Thomas Denny, Gregory D Sempowski, Christopher W Woods
Author Information
  1. Tulika Singh: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  2. Andrew N Macintyre: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  3. Thomas W Burke: Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States.
  4. Jack Anderson: Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States.
  5. Elizabeth Petzold: Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States.
  6. Erica L Stover: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  7. Matthew J French: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  8. Thomas H Oguin: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  9. Todd Demarco: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  10. Micah T McClain: Duke Global Health Institute, Durham, NC, United States.
  11. Emily R Ko: Center for Infectious Disease Diagnostics and Innovation, Duke University, Durham, NC, United States.
  12. Lawrence P Park: Duke Global Health Institute, Durham, NC, United States.
  13. Thomas Denny: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  14. Gregory D Sempowski: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
  15. Christopher W Woods: Duke Global Health Institute, Durham, NC, United States.

Abstract

Introduction: Dysregulated host cytokine responses to SARS-CoV-2 infection are a primary cause of progression to severe disease, whereas early neutralizing antibody responses are considered protective. However, there are gaps in understanding the early temporal dynamics of these immune responses, and the profile of productive immune responses generated by non-hospitalized people with mild infections in the community.
Methods: Here we conducted a prospective cohort study of people with suspected infections/exposures in the US state of North Carolina, before vaccine availability. We recruited participants not only in hospitals/clinics, but also in their homes. With serial sampling, we compared virologic and immunologic factors in 258 community cases versus 114 hospital cases of COVID-19 to define factors associated with severity.
Results: We found that high early neutralizing antibodies were associated with lower nasal viral load, but not protection from hospitalization. Cytokine responses were evaluated in 125 cases, with subsets at first versus second week of illness to assess for time-dependent trajectories. The hospital group demonstrated a higher magnitude of serum IL-6, IL-1R antagonist, IP-10, and MIG; prolonged upregulation of IL-17; and lesser downregulation of GRO��, IL-1R antagonist, and MCP1, in comparison to the community group suggesting that these factors may contribute to immunopathology. In the second week of illness, 2-fold increases in IL-6, IL-1R antagonist, and IP-10 were associated with 2.2, 1.8, and 10-fold higher odds of hospitalization respectively, whereas a 2-fold increase in IL-10 was associated with 63% reduction in odds of hospitalization (p<0.05). Moreover, antibody responses at 3-6 months post mild SARS-CoV-2 infections in the community revealed long-lasting antiviral IgM and IgA antibodies as well as a stable set point of neutralizing antibodies that were not waning.
Discussion: Our data provide valuable temporal cytokine benchmarks to track the progression of immunopathology in COVID-19 patients and guide improvements in immunotherapies.

Keywords

References

  1. Immunity. 2024 Apr 9;57(4):912-925.e4 [PMID: 38490198]
  2. Cytokine Growth Factor Rev. 2002 Dec;13(6):429-39 [PMID: 12401478]
  3. J Biol Chem. 1993 Jul 25;268(21):15419-24 [PMID: 8340371]
  4. Respir Med. 2023 Oct;217:107331 [PMID: 37364721]
  5. Clin Infect Dis. 2022 May 3;74(9):1525-1533 [PMID: 34374761]
  6. BMJ Open. 2020 Nov 30;10(11):e041471 [PMID: 33257492]
  7. J Immunol Methods. 2009 Jan 1;340(1):33-41 [PMID: 18952093]
  8. Virchows Arch. 2021 Jan;478(1):137-150 [PMID: 33604758]
  9. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  10. Front Immunol. 2014 Oct 07;5:491 [PMID: 25339958]
  11. N Engl J Med. 2021 Apr 22;384(16):1491-1502 [PMID: 33631065]
  12. Cell. 2021 Feb 18;184(4):861-880 [PMID: 33497610]
  13. Sci Rep. 2021 Jun 1;11(1):11462 [PMID: 34075090]
  14. Lancet Microbe. 2023 Sep;4(9):e692-e703 [PMID: 37659419]
  15. J Hematol Oncol. 2016 Dec 8;9(1):137 [PMID: 27931243]
  16. Sci Rep. 2022 Jul 9;12(1):11714 [PMID: 35810186]
  17. Virol J. 2022 May 26;19(1):92 [PMID: 35619180]
  18. N Engl J Med. 2020 Oct 29;383(18):1782-1784 [PMID: 32871061]
  19. N Engl J Med. 2020 Oct 29;383(18):1724-1734 [PMID: 32871063]
  20. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  21. Nat Commun. 2021 Feb 17;12(1):1079 [PMID: 33597532]
  22. Nat Rev Cardiol. 2018 Sep;15(9):505-522 [PMID: 30065258]
  23. MMWR Morb Mortal Wkly Rep. 2020 Apr 17;69(15):458-464 [PMID: 32298251]
  24. Sci Transl Med. 2021 Oct 06;13(614):eabg9478 [PMID: 34613812]
  25. Nat Med. 2020 Aug;26(8):1200-1204 [PMID: 32555424]
  26. Lancet. 2021 May 01;397(10285):1637-1645 [PMID: 33933206]
  27. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  28. Lancet Infect Dis. 2020 Aug;20(8):911-919 [PMID: 32353347]
  29. J Allergy Clin Immunol. 2020 Jul;146(1):119-127.e4 [PMID: 32360286]
  30. Acta Haematol. 2021;144(4):355-359 [PMID: 32791509]
  31. Nat Immunol. 2022 Jul;23(7):1076-1085 [PMID: 35761085]
  32. Nat Med. 2021 Jul;27(7):1178-1186 [PMID: 33953384]
  33. Forensic Sci Med Pathol. 2022 Mar;18(1):4-19 [PMID: 34463916]
  34. Cold Spring Harb Perspect Biol. 2014 Sep 04;6(10):a016295 [PMID: 25190079]
  35. Nat Methods. 2023 Apr;20(4):512-522 [PMID: 36823332]
  36. BMC Med. 2022 Oct 13;20(1):379 [PMID: 36224590]
  37. Sci Rep. 2021 Jun 15;11(1):12606 [PMID: 34131192]
  38. Ann N Y Acad Sci. 2007 Nov;1119:176-89 [PMID: 18056965]
  39. MMWR Morb Mortal Wkly Rep. 2020 Jul 17;69(28):923-929 [PMID: 32673298]
  40. Sci Immunol. 2020 Dec 7;5(54): [PMID: 33288645]
  41. Inflamm Regen. 2020 Aug 6;40:19 [PMID: 32834892]
  42. Travel Med Infect Dis. 2020 Mar - Apr;34:101623 [PMID: 32179124]
  43. Nat Rev Immunol. 2020 Sep;20(9):529-536 [PMID: 32728222]
  44. Nat Med. 2020 Nov;26(11):1691-1693 [PMID: 32929268]
  45. N Engl J Med. 2021 Dec 9;385(24):e84 [PMID: 34614326]
  46. Cell. 2022 Feb 3;185(3):493-512.e25 [PMID: 35032429]
  47. Front Immunol. 2020 Jul 10;11:1708 [PMID: 32754163]
  48. Emerg Infect Dis. 2023 Jan;29(1):207-211 [PMID: 36573634]
  49. Sci Immunol. 2021 Jan 21;6(55): [PMID: 33478949]
  50. Clin Infect Dis. 2020 Nov 5;71(8):2006-2013 [PMID: 32382748]
  51. Cell Mol Immunol. 2024 Feb;21(2):144-158 [PMID: 37945737]
  52. World J Pediatr. 2020 Jun;16(3):251-259 [PMID: 32193831]
  53. Immunity. 2022 Jun 14;55(6):925-944 [PMID: 35623355]
  54. Health Sci Rep. 2022 Jul 22;5(4):e554 [PMID: 35899182]
  55. J Infect. 2020 May;80(5):e1-e6 [PMID: 32171869]
  56. Cell Host Microbe. 2020 May 13;27(5):841-848.e3 [PMID: 32289263]
  57. Annu Rev Immunol. 2018 Apr 26;36:411-433 [PMID: 29677473]
  58. MMWR Morb Mortal Wkly Rep. 2021 Nov 19;70(46):1613-1616 [PMID: 34793414]
  59. J Neuroinflammation. 2016 Aug 30;13(1):217 [PMID: 27576738]
  60. Elife. 2021 Jan 14;10: [PMID: 33443016]
  61. Science. 2021 Sep 17;373(6561):eabj0299 [PMID: 34529476]
  62. N Engl J Med. 2007 Nov 8;357(19):1903-15 [PMID: 17989383]
  63. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  64. Am J Pathol. 2021 Jan;191(1):4-17 [PMID: 32919977]
  65. Autoimmun Rev. 2020 Jun;19(6):102537 [PMID: 32251717]
  66. Front Immunol. 2020 Sep 24;11:558898 [PMID: 33072097]
  67. Signal Transduct Target Ther. 2021 Jul 7;6(1):255 [PMID: 34234112]
  68. Inflamm Res. 2020 Jun;69(6):599-606 [PMID: 32227274]
  69. Cell. 2020 Aug 20;182(4):828-842.e16 [PMID: 32645326]
  70. Nat Commun. 2020 Sep 17;11(1):4704 [PMID: 32943637]
  71. J Thorac Oncol. 2020 May;15(5):700-704 [PMID: 32114094]
  72. N Engl J Med. 2020 Sep 10;383(11):1085-1087 [PMID: 32706954]
  73. Sci Rep. 2023 Nov 7;13(1):19322 [PMID: 37935729]
  74. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]
  75. Nat Commun. 2023 Jun 6;14(1):3272 [PMID: 37277329]
  76. MMWR Morb Mortal Wkly Rep. 2020 Sep 18;69(37):1324-1329 [PMID: 32941417]
  77. Nat Med. 2020 Oct;26(10):1636-1643 [PMID: 32839624]
  78. Clin Microbiol Infect. 2020 Jun;26(6):729-734 [PMID: 32234451]
  79. Nat Rev Bioeng. 2023;1(4):286-303 [PMID: 37064653]

Grants

  1. UC6 AI058607/NIAID NIH HHS
  2. U01 AI066569/NIAID NIH HHS
  3. G20 AI167200/NIAID NIH HHS
  4. UC7 AI180254/NIAID NIH HHS
  5. UM1 AI104681/NIAID NIH HHS

MeSH Term

Humans
COVID-19
Male
SARS-CoV-2
Female
Cytokines
Antibodies, Viral
Middle Aged
Antibodies, Neutralizing
Adult
Prospective Studies
Hospitalization
Viral Load
Aged
North Carolina

Chemicals

Cytokines
Antibodies, Viral
Antibodies, Neutralizing

Word Cloud

Created with Highcharts 10.0.0responsescommunitySARS-CoV-2associatedantibodiescytokineearlyneutralizingantibodyinfectionsfactorscasesversushospitalhospitalizationIL-1RantagonistprogressionwhereastemporaldynamicsimmunepeoplemildCOVID-19secondweekillnessgrouphigherIL-6IP-10immunopathology2-fold2oddsIntroduction:DysregulatedhostinfectionprimarycauseseverediseaseconsideredprotectiveHowevergapsunderstandingprofileproductivegeneratednon-hospitalizedMethods:conductedprospectivecohortstudysuspectedinfections/exposuresUSstateNorthCarolinavaccineavailabilityrecruitedparticipantshospitals/clinicsalsohomesserialsamplingcomparedvirologicimmunologic258114defineseverityResults:foundhighlowernasalviralloadprotectionCytokineevaluated125subsetsfirstassesstime-dependenttrajectoriesdemonstratedmagnitudeserumMIGprolongedupregulationIL-17lesserdownregulationGRO��MCP1comparisonsuggestingmaycontributeincreases1810-foldrespectivelyincreaseIL-1063%reductionp<005Moreover3-6monthspostrevealedlong-lastingantiviralIgMIgAwellstablesetpointwaningDiscussion:dataprovidevaluablebenchmarkstrackpatientsguideimprovementsimmunotherapiesDynamicscytokines

Similar Articles

Cited By