Preserving friendships in school contacts: An algorithm to construct synthetic temporal networks for epidemic modelling.

Lucille Calmon, Elisabetta Colosi, Giulia Bassignana, Alain Barrat, Vittoria Colizza
Author Information
  1. Lucille Calmon: Sorbonne Universit��, INSERM, Pierre-Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France. ORCID
  2. Elisabetta Colosi: Sorbonne Universit��, INSERM, Pierre-Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France. ORCID
  3. Giulia Bassignana: Sorbonne Universit��, INSERM, Pierre-Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France. ORCID
  4. Alain Barrat: Aix Marseille Univ, Universit�� de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France. ORCID
  5. Vittoria Colizza: Sorbonne Universit��, INSERM, Pierre-Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France. ORCID

Abstract

High-resolution temporal data on contacts between hosts provide crucial information on the mixing patterns underlying infectious disease transmission. Publicly available data sets of contact data are however typically recorded over short time windows with respect to the duration of an epidemic. To inform models of disease transmission, data are thus often repeated several times, yielding synthetic data covering long enough timescales. Looping over short term data to approximate contact patterns on longer timescales can lead to unrealistic transmission chains because of the deterministic repetition of all contacts, without any renewal of the contact partners of each individual between successive periods. Real contacts indeed include a combination of regularly repeated contacts (e.g., due to friendship relations) and of more casual ones. In this paper, we propose an algorithm to longitudinally extend contact data recorded in a school setting, taking into account this dual aspect of contacts and in particular the presence of repeated contacts due to friendships. To illustrate the interest of such an algorithm, we then simulate the spread of SARS-CoV-2 on our synthetic contacts using an agent-based model specific to the school setting. We compare the results with simulations performed on synthetic data extended with simpler algorithms to determine the impact of preserving friendships in the data extension method. Notably, the preservation of friendships does not strongly affect transmission routes between classes in the school but leads to different infection pathways between individual students. Our results moreover indicate that gathering contact data during two days in a population is sufficient to generate realistic synthetic contact sequences between individuals in that population on longer timescales. The proposed tool will allow modellers to leverage existing contact data, and contributes to the design of optimal future field data collection.

References

  1. Sci Rep. 2017 Aug 30;7(1):9975 [PMID: 28855718]
  2. J R Soc Interface. 2015 Jul 6;12(108):20150279 [PMID: 26063821]
  3. Epidemics. 2015 Mar;10:72-7 [PMID: 25843388]
  4. Theor Popul Biol. 2008 Feb;73(1):104-11 [PMID: 18006032]
  5. J R Soc Interface. 2022 Jun;19(191):20220164 [PMID: 35730172]
  6. Clin Microbiol Infect. 2024 Jun;30(6):829.e1-829.e4 [PMID: 38467247]
  7. PLoS Comput Biol. 2015 Mar 12;11(3):e1004152 [PMID: 25763816]
  8. PLoS Comput Biol. 2015 Mar 19;11(3):e1004170 [PMID: 25789632]
  9. Sci Rep. 2021 Apr 1;11(1):7393 [PMID: 33795708]
  10. Sci Data. 2019 Dec 11;6(1):315 [PMID: 31827097]
  11. Sci Adv. 2021 Apr 9;7(15): [PMID: 33712416]
  12. Proc Biol Sci. 2024 Aug;291(2027):20241296 [PMID: 39043233]
  13. PLoS Comput Biol. 2024 Jun 13;20(6):e1012227 [PMID: 38870216]
  14. Theor Biol Med Model. 2009 Jun 29;6:11 [PMID: 19563624]
  15. Sci Rep. 2016 Apr 15;6:24593 [PMID: 27079788]
  16. PLoS One. 2015 Sep 01;10(9):e0136497 [PMID: 26325289]
  17. Sci Rep. 2013;3:1950 [PMID: 23739519]
  18. BMC Infect Dis. 2014 Dec 31;14:695 [PMID: 25595123]
  19. Epidemiol Infect. 2012 Dec;140(12):2117-30 [PMID: 22687447]
  20. PLoS One. 2013 Sep 11;8(9):e73970 [PMID: 24040129]
  21. Sci Data. 2022 Dec 22;9(1):777 [PMID: 36550122]
  22. Lancet Infect Dis. 2022 Jul;22(7):977-989 [PMID: 35378075]
  23. Nat Commun. 2022 Apr 12;13(1):1956 [PMID: 35414056]
  24. PLoS One. 2014 Sep 16;9(9):e107878 [PMID: 25226026]
  25. PLoS Comput Biol. 2024 Jun 10;20(6):e1012206 [PMID: 38857274]
  26. BMC Public Health. 2023 Jul 6;23(1):1298 [PMID: 37415096]
  27. PLoS One. 2010 Jul 15;5(7):e11596 [PMID: 20657651]
  28. Clin Microbiol Infect. 2014 Jan;20(1):10-6 [PMID: 24267942]
  29. Euro Surveill. 2023 Feb;28(5): [PMID: 36729116]
  30. BMC Med. 2011 Jul 19;9:87 [PMID: 21771290]
  31. Nat Commun. 2022 Mar 17;13(1):1414 [PMID: 35301289]
  32. BMC Infect Dis. 2013 Apr 23;13:185 [PMID: 23618005]
  33. PLoS One. 2011;6(8):e23176 [PMID: 21858018]
  34. Nat Commun. 2015 Nov 13;6:8860 [PMID: 26563418]
  35. PLoS One. 2015 Jul 15;10(7):e0133203 [PMID: 26176549]
  36. PLoS One. 2011 Feb 28;6(2):e17144 [PMID: 21386902]
  37. PLoS Comput Biol. 2011 Jun;7(6):e1002042 [PMID: 21673864]
  38. J R Soc Interface. 2021 May;18(178):20201000 [PMID: 33947224]
  39. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22020-5 [PMID: 21149721]
  40. BMC Med. 2013 Feb 12;11:35 [PMID: 23402633]
  41. J R Soc Interface. 2024 Dec;21(221):20240358 [PMID: 39689845]
  42. J Infect Dis. 2012 Nov 15;206(10):1549-57 [PMID: 23045621]
  43. Phys Rev E. 2021 May;103(5-1):052304 [PMID: 34134319]
  44. PLoS Med. 2008 Mar 25;5(3):e74 [PMID: 18366252]

MeSH Term

Humans
Algorithms
COVID-19
Schools
Friends
SARS-CoV-2
Contact Tracing
Computational Biology
Computer Simulation
Epidemics

Word Cloud

Created with Highcharts 10.0.0datacontactscontactsynthetictransmissionschoolfriendshipsrepeatedtimescalesalgorithmtemporalpatternsdiseaserecordedshortepidemiclongerindividualduesettingresultspopulationHigh-resolutionhostsprovidecrucialinformationmixingunderlyinginfectiousPubliclyavailablesetshowevertypicallytimewindowsrespectdurationinformmodelsthusoftenseveraltimesyieldingcoveringlongenoughLoopingtermapproximatecanleadunrealisticchainsdeterministicrepetitionwithoutrenewalpartnerssuccessiveperiodsRealindeedincludecombinationregularlyegfriendshiprelationscasualonespaperproposelongitudinallyextendtakingaccountdualaspectparticularpresenceillustrateinterestsimulatespreadSARS-CoV-2usingagent-basedmodelspecificcomparesimulationsperformedextendedsimpleralgorithmsdetermineimpactpreservingextensionmethodNotablypreservationstronglyaffectroutesclassesleadsdifferentinfectionpathwaysstudentsmoreoverindicategatheringtwodayssufficientgeneraterealisticsequencesindividualsproposedtoolwillallowmodellersleverageexistingcontributesdesignoptimalfuturefieldcollectionPreservingcontacts:constructnetworksmodelling

Similar Articles

Cited By