Coelimycin inside out - negative feedback regulation by its intracellular precursors.

Magdalena Kotowska, Mateusz Wenecki, Bartosz Bednarz, Jarosław Ciekot, Wojciech Pasławski, Tomasz Buhl, Krzysztof J Pawlik
Author Information
  1. Magdalena Kotowska: Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. ORCID
  2. Mateusz Wenecki: Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. ORCID
  3. Bartosz Bednarz: Faculty of Biotechnology, Laboratory of Biological Chemistry, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383, Wroclaw, Poland. ORCID
  4. Jarosław Ciekot: Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. ORCID
  5. Wojciech Pasławski: Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. ORCID
  6. Tomasz Buhl: Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
  7. Krzysztof J Pawlik: Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. krzysztof.pawlik@hirszfeld.pl. ORCID

Abstract

Coelimycin (CPK) producer Streptomyces coelicolor A3(2) is a well-established model for the genetic studies of bacteria from the genus Streptomyces, renowned for their ability to produce a plethora of antibiotics and other secondary metabolites. Expression regulation of natural product biosynthetic gene clusters (BGCs) is highly complex, involving not only regulatory proteins, like transcription factors, but also the products of the biosynthetic pathway that may act as ligands for some regulators and modulate their activity. Here, we present the evidence that intracellular CPK precursor(s) (preCPK) is involved in a negative feedback loop repressing the CPK BGC. Moreover, we provide a characterization of the cluster-encoded efflux pump CpkF. We show that CpkF is essential for the extracellular CPK production. In order to track down which CPK compounds - intra- or extracellular - are the ones responsible for the feedback signal, a luciferase-based reporter system was applied to compare the activity of 13 CPK gene promoters in the wild-type (WT) and two mutated strains. The first strain, lacking the CPK-specific exporter CpkF (ΔcpkF), was unable to produce the extracellular CPK. The second one did not produce any CPK at all, due to the disruption of the CpkC polyketide synthase subunit (ΔcpkC). All tested promoters were strongly upregulated in ΔcpkC strain, while in the ΔcpkF strain, promoter activity resembled the one of WT. These results lead to the conclusion that the CPK polyketide acts as a silencer of its own production. Supposedly this function is exerted via binding of the preCPK by an unidentified regulatory protein. KEY POINTS: •Intracellular coelimycin precursor takes part in a negative cpk cluster regulation •CpkF exporter is essential for the extracellular coelimycin production •Simple method for the analysis of coelimycin P2 production in agar medium.

Keywords

References

  1. Microbiology (Reading). 2010 Aug;156(Pt 8):2343-2353 [PMID: 20447997]
  2. J Biosci Bioeng. 2010 Mar;109(3):230-4 [PMID: 20159569]
  3. Nat Chem Biol. 2015 Sep;11(9):625-31 [PMID: 26284661]
  4. FEMS Microbiol Rev. 2010 Mar;34(2):171-98 [PMID: 20088961]
  5. Nucleic Acids Res. 2021 Jan 8;49(D1):D461-D467 [PMID: 33170213]
  6. Org Lett. 2017 Nov 17;19(22):6208-6211 [PMID: 29090939]
  7. Biochim Biophys Acta. 2007 Jun;1768(6):1342-66 [PMID: 17490609]
  8. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  9. Appl Microbiol Biotechnol. 2013 Mar;97(6):2413-21 [PMID: 23081778]
  10. FEMS Microbiol Lett. 2010 Apr;305(1):18-27 [PMID: 20158521]
  11. Microbiol Rev. 1996 Dec;60(4):575-608 [PMID: 8987357]
  12. J Mol Biol. 1986 Feb 5;187(3):341-8 [PMID: 3517354]
  13. Cell Chem Biol. 2018 Feb 15;25(2):143-153.e4 [PMID: 29198568]
  14. PLoS One. 2013;8(3):e60665 [PMID: 23555999]
  15. J Bacteriol. 2007 Dec;189(24):9131-4 [PMID: 17951386]
  16. BMC Genomics. 2016 Aug 22;17 Suppl 7:510 [PMID: 27557108]
  17. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  18. Adv Appl Microbiol. 2014;89:217-66 [PMID: 25131404]
  19. Acta Biochim Pol. 2014;61(1):141-7 [PMID: 24660171]
  20. mBio. 2012 Oct 16;3(5):e00191-12 [PMID: 23073761]
  21. J Mol Microbiol Biotechnol. 2010;19(3):147-51 [PMID: 20924201]
  22. BMC Microbiol. 2013 Dec 05;13:279 [PMID: 24304716]
  23. Arch Microbiol. 2007 Feb;187(2):87-99 [PMID: 17009021]
  24. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3630-5 [PMID: 8622987]
  25. Chem Rev. 2021 May 12;121(9):5289-5335 [PMID: 33886296]
  26. Appl Environ Microbiol. 2021 Mar 11;87(7): [PMID: 33483304]
  27. Appl Microbiol Biotechnol. 2019 Aug;103(16):6423-6434 [PMID: 31250060]
  28. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  29. Front Microbiol. 2021 Apr 09;12:616050 [PMID: 33897632]
  30. J Mol Microbiol Biotechnol. 2001 Oct;3(4):501-2 [PMID: 11545267]
  31. Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183277 [PMID: 32205149]
  32. Chem Sci. 2017 Jan 1;8(1):411-415 [PMID: 28451186]
  33. J Bacteriol. 2013 May;195(10):2232-43 [PMID: 23475969]
  34. J Biol Chem. 2010 Aug 27;285(35):27440-27448 [PMID: 20562102]
  35. Microbiology (Reading). 2019 Aug;165(8):805-818 [PMID: 30964430]
  36. Adv Appl Microbiol. 2004;54:107-28 [PMID: 15251278]
  37. Microorganisms. 2020 Feb 16;8(2): [PMID: 32079127]
  38. Mol Microbiol. 2015 Jun;96(6):1257-71 [PMID: 25786547]
  39. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  40. Nucleic Acids Res. 2015 Jul 1;43(W1):W401-7 [PMID: 25969446]
  41. Front Microbiol. 2024 Mar 14;15:1368809 [PMID: 38550856]

MeSH Term

Gene Expression Regulation, Bacterial
Streptomyces coelicolor
Multigene Family
Feedback, Physiological
Anti-Bacterial Agents
Promoter Regions, Genetic
Bacterial Proteins
Biosynthetic Pathways

Chemicals

Anti-Bacterial Agents
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0CPKextracellularproductionStreptomycesproduceregulationactivitynegativefeedbackCpkF-straincoelimycinCoelimycincoelicolorbiosyntheticgeneregulatoryintracellularprecursorpreCPKessentialsystempromotersWTexporterΔcpkFonepolyketideΔcpkCproducerA32well-establishedmodelgeneticstudiesbacteriagenusrenownedabilityplethoraantibioticssecondarymetabolitesExpressionnaturalproductclustersBGCshighlycomplexinvolvingproteinsliketranscriptionfactorsalsoproductspathwaymayactligandsregulatorsmodulatepresentevidencesinvolvedlooprepressingBGCMoreoverprovidecharacterizationcluster-encodedeffluxpumpshowordertrackcompoundsintra-onesresponsiblesignalluciferase-basedreporterappliedcompare13wild-typetwomutatedstrainsfirstlackingCPK-specificunablesecondduedisruptionCpkCsynthasesubunittestedstronglyupregulatedpromoterresembledresultsleadconclusionactssilencerSupposedlyfunctionexertedviabindingunidentifiedproteinKEYPOINTS:•Intracellulartakespartcpkcluster•CpkF•SimplemethodanalysisP2agarmediuminsideprecursorsMajorfacilitatorsuperfamilyPolyketideRegulationReporterSecondarymetabolism

Similar Articles

Cited By

No available data.