Boron-induced transformation of ultrathin Au films into two-dimensional metallic nanostructures.

Alexei Preobrajenski, Nikolay Vinogradov, David A Duncan, Tien-Lin Lee, Mikhail Tsitsvero, Tetsuya Taketsugu, Andrey Lyalin
Author Information
  1. Alexei Preobrajenski: MAX IV Laboratory, Lund University, 221 00, Lund, Sweden. Alexei.Preobrajenski@maxiv.lu.se. ORCID
  2. Nikolay Vinogradov: MAX IV Laboratory, Lund University, 221 00, Lund, Sweden.
  3. David A Duncan: Diamond Light Source, Didcot, OX11 0QX, UK. ORCID
  4. Tien-Lin Lee: Diamond Light Source, Didcot, OX11 0QX, UK.
  5. Mikhail Tsitsvero: Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan. ORCID
  6. Tetsuya Taketsugu: Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan. ORCID
  7. Andrey Lyalin: Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan. lyalin@icredd.hokudai.ac.jp. ORCID

Abstract

The synthesis of large, freestanding, single-atom-thick two-dimensional (2D) metallic materials remains challenging due to the isotropic nature of metallic bonding. Here, we present a bottom-up approach for fabricating macroscopically large, nearly freestanding 2D gold (Au) monolayers, consisting of nanostructured patches. By forming Au monolayers on an Ir(111) substrate and embedding boron (B) atoms at the Au/Ir interface, we achieve suspended monoatomic Au sheets with hexagonal structures and triangular nanoscale patterns. Alternative patterns of periodic nanodots are observed in Au bilayers on the B/Ir(111) substrate. Using scanning tunneling microscopy, X-ray spectroscopies, and theoretical calculations, we reveal the role of buried B species in forming the nanostructured Au layers. Changes in the Au monolayer's band structure upon substrate decoupling indicate a transition from 3D to 2D metal bonding. The resulting Au films exhibit remarkable thermal stability, making them practical for studying the catalytic activity of 2D gold.

References

  1. ACS Nano. 2020 Dec 22;14(12):17091-17099 [PMID: 33152233]
  2. Phys Rev Lett. 2012 Feb 10;108(6):066804 [PMID: 22401103]
  3. Phys Chem Chem Phys. 2015 Aug 14;17(30):19695-9 [PMID: 26166376]
  4. Adv Mater. 2015 Sep 23;27(36):5396-402 [PMID: 26214606]
  5. Nanoscale. 2019 Dec 7;11(45):22019-22024 [PMID: 31713567]
  6. ACS Appl Mater Interfaces. 2023 Dec 2;: [PMID: 38041641]
  7. J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):831-840 [PMID: 37159290]
  8. Science. 2014 Mar 14;343(6176):1228-32 [PMID: 24626924]
  9. ACS Omega. 2019 May 02;4(5):8015-8021 [PMID: 31459890]
  10. Nat Commun. 2020 May 6;11(1):2236 [PMID: 32376867]
  11. Angew Chem Int Ed Engl. 2020 Sep 1;59(36):15665-15673 [PMID: 32343883]
  12. Nat Nanotechnol. 2011 Jan;6(1):28-32 [PMID: 21131956]
  13. J Chem Theory Comput. 2021 Dec 14;17(12):7827-7849 [PMID: 34735764]
  14. Phys Chem Chem Phys. 2023 Mar 22;25(12):8281-8292 [PMID: 36892012]
  15. J Chem Phys. 2010 Apr 21;132(15):154104 [PMID: 20423165]
  16. J Comput Chem. 2011 May;32(7):1456-65 [PMID: 21370243]
  17. ACS Nano. 2019 Dec 24;13(12):14511-14518 [PMID: 31790188]
  18. Phys Rev Lett. 2009 Mar 13;102(10):106102 [PMID: 19392129]
  19. Nat Commun. 2014;5:3313 [PMID: 24531189]
  20. Phys Chem Chem Phys. 2015 Oct 21;17(39):26036-42 [PMID: 26376707]
  21. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  22. ACS Nano. 2018 Feb 27;12(2):1262-1272 [PMID: 29378394]
  23. Nano Lett. 2019 Jul 10;19(7):4560-4566 [PMID: 31241953]
  24. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  25. ACS Nano. 2021 Apr 27;15(4):7421-7429 [PMID: 33759515]

Grants

  1. 2018-07152/Vetenskapsr��det (Swedish Research Council)
  2. 2018-04969/VINNOVA (Swedish Governmental Agency for Innovation Systems)
  3. 2019-02496/Svenska Forskningsr��det Formas (Swedish Research Council Formas)
  4. hp230212/MEXT | RIKEN

Word Cloud

Created with Highcharts 10.0.0Au2Dmetallicsubstratelargefreestandingtwo-dimensionalbondinggoldmonolayersnanostructuredforming111Bpatternsfilmssynthesissingle-atom-thickmaterialsremainschallengingdueisotropicnaturepresentbottom-upapproachfabricatingmacroscopicallynearlyconsistingpatchesIrembeddingboronatomsAu/IrinterfaceachievesuspendedmonoatomicsheetshexagonalstructurestriangularnanoscaleAlternativeperiodicnanodotsobservedbilayersB/IrUsingscanningtunnelingmicroscopyX-rayspectroscopiestheoreticalcalculationsrevealroleburiedspecieslayersChangesmonolayer'sbandstructureupondecouplingindicatetransition3DmetalresultingexhibitremarkablethermalstabilitymakingpracticalstudyingcatalyticactivityBoron-inducedtransformationultrathinnanostructures

Similar Articles

Cited By

No available data.