Biosynthesis of Antimicrobial Ornithine-Containing Lacticin 481 Analogues by Use of a Combinatorial Biosynthetic Pathway in .

Yanli Xu, Roos Reuvekamp, Oscar P Kuipers
Author Information
  1. Yanli Xu: Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands. ORCID
  2. Roos Reuvekamp: Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands.
  3. Oscar P Kuipers: Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands. ORCID

Abstract

Lacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides. The incorporation of noncanonical amino acids, occurring in many nonribosomal peptides (NRPs), is a valuable strategy to improve the properties of antimicrobial peptides. Ornithine, a noncanonical amino acid, can be integrated into RiPPs through the conversion of arginine residues by the newly characterized peptide arginase OspR. Recently, a flexible expression system was described for engineering lanthipeptides using the post-translational modification enzyme SyncM, which has a relaxed substrate specificity. This study demonstrates that SyncM is able to catalyze the production of active lacticin 481 by recognition of a designed hybrid leader peptide, which enables the incorporation of both ornithine and (methyl)lanthionine. Utilizing this hybrid leader peptide, the functional order was established for the production of active ornithine-containing lacticin 481 analogues at positions 8 and 12 . Furthermore, this study demonstrates that prior lanthionine (Lan) and methyllanthionine (MeLan) formation may preclude ornithine incorporation at specific sites of lacticin 481. The antibacterial activity of ornithine-containing lacticin 481 analogues was evaluated using as the indicator strain. Overall, the synthetic biology pathway constructed here helped to elucidate aspects of the substrate preferences of OspR and SyncM, offering practical guidance to combine these modifications for further lantibiotic bioengineering.

Keywords

References

  1. Biotechnol Lett. 2017 Apr;39(4):473-482 [PMID: 28044226]
  2. Science. 2004 Jan 30;303(5658):679-81 [PMID: 14752162]
  3. Elife. 2019 Jan 14;8: [PMID: 30638446]
  4. ACS Synth Biol. 2023 Jan 20;12(1):164-177 [PMID: 36520855]
  5. Appl Environ Microbiol. 1996 Feb;62(2):385-92 [PMID: 8593044]
  6. FEMS Microbiol Rev. 2023 May 19;47(3): [PMID: 37096385]
  7. FEMS Microbiol Rev. 2017 Jan;41(1):5-18 [PMID: 27591436]
  8. J Antimicrob Chemother. 2018 Jan 1;73(1):1-11 [PMID: 29059358]
  9. Antonie Van Leeuwenhoek. 1996 Feb;69(2):171-84 [PMID: 8775977]
  10. Biochem Soc Trans. 2021 Feb 26;49(1):203-215 [PMID: 33439248]
  11. Cell Mol Life Sci. 2021 Apr;78(8):3921-3940 [PMID: 33532865]
  12. ACS Cent Sci. 2017 Jun 28;3(6):629-638 [PMID: 28691075]
  13. J Am Chem Soc. 2009 Sep 2;131(34):12024-5 [PMID: 19655738]
  14. Sci Rep. 2016 Sep 16;6:33447 [PMID: 27634138]
  15. ACS Chem Biol. 2023 Mar 17;18(3):528-536 [PMID: 36791048]
  16. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10430-5 [PMID: 20479271]
  17. Chem Rev. 2017 Apr 26;117(8):5457-5520 [PMID: 28135077]
  18. Antimicrob Agents Chemother. 2011 Apr;55(4):1671-6 [PMID: 21220527]
  19. Angew Chem Int Ed Engl. 2020 Jul 13;59(29):11763-11768 [PMID: 32163654]
  20. ACS Chem Biol. 2012 Nov 16;7(11):1791-5 [PMID: 22920239]
  21. Front Bioeng Biotechnol. 2020 Sep 28;8:571165 [PMID: 33117783]
  22. Appl Environ Microbiol. 2021 Jun 25;87(14):e0018621 [PMID: 33962984]
  23. Annu Rev Microbiol. 2007;61:477-501 [PMID: 17506681]
  24. J Bacteriol. 1997 Nov;179(21):6843-50 [PMID: 9352938]
  25. Proc Natl Acad Sci U S A. 2022 Jan 18;119(3): [PMID: 35027450]
  26. Front Microbiol. 2015 Nov 27;6:1363 [PMID: 26640466]
  27. J Am Chem Soc. 2017 Aug 30;139(34):11646-11649 [PMID: 28809560]
  28. Nat Prod Rep. 2024 Jul 17;41(7):990-1019 [PMID: 38411278]
  29. ACS Chem Biol. 2017 Sep 15;12(9):2362-2370 [PMID: 28758722]
  30. Appl Environ Microbiol. 2013 Jul;79(13):4015-23 [PMID: 23603688]
  31. Appl Environ Microbiol. 2022 Dec 13;88(23):e0161722 [PMID: 36416555]
  32. ACS Chem Biol. 2014 Nov 21;9(11):2686-94 [PMID: 25244001]
  33. Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21442-21447 [PMID: 32780902]
  34. J Antimicrob Chemother. 2018 Feb 1;73(2):414-424 [PMID: 29092042]
  35. Front Microbiol. 2020 Jun 09;11:1183 [PMID: 32582108]
  36. Appl Environ Microbiol. 2018 May 31;84(12): [PMID: 29625984]
  37. Antimicrob Agents Chemother. 2020 May 21;64(6): [PMID: 32179527]
  38. Sci Rep. 2019 Nov 29;9(1):17938 [PMID: 31784584]
  39. J Bacteriol. 2002 Jan;184(2):410-9 [PMID: 11751817]
  40. Int J Food Microbiol. 2021 Aug 16;352:109281 [PMID: 34126526]
  41. Angew Chem Int Ed Engl. 2012 Jan 9;51(2):415-8 [PMID: 22128014]
  42. Chem Biol. 2006 Oct;13(10):1109-17 [PMID: 17052615]
  43. ACS Chem Biol. 2018 Apr 20;13(4):951-957 [PMID: 29439566]
  44. ACS Synth Biol. 2021 Oct 15;10(10):2579-2591 [PMID: 34554737]
  45. J Biol Chem. 2016 Jun 24;291(26):13662-78 [PMID: 27151214]
  46. J Org Chem. 2005 Apr 1;70(7):2430-8 [PMID: 15787528]
  47. Nat Chem. 2022 Dec;14(12):1390-1398 [PMID: 36316408]
  48. ACS Synth Biol. 2021 Aug 20;10(8):1980-1991 [PMID: 34347446]
  49. Org Lett. 2000 Nov 16;2(23):3603-6 [PMID: 11073655]

MeSH Term

Ornithine
Escherichia coli
Protein Processing, Post-Translational
Sulfides
Bacteriocins
Biosynthetic Pathways
Alanine

Chemicals

Ornithine
lacticin 481
lanthionine
Sulfides
Bacteriocins
Alanine

Word Cloud

Created with Highcharts 10.0.0481lacticinpeptideSyncMantimicrobiallanthioninepost-translationalpeptidesincorporationOspRleaderornithineLacticinactivitymethyllanthioninemethylenzymeformationmodificationscanfunctionalnoncanonicalaminousingsubstratestudydemonstratesproductionactivehybridornithine-containinganaloguesbioengineeringribosomallysynthesizedpost-translationallymodifiedRiPPexhibitscharacteristicringstructuresessentialintroductionlanthioninescatalyzedLctMadditionmacrocyclevariousenhancemodulatechemicaldiversityacidsoccurringmanynonribosomalNRPsvaluablestrategyimprovepropertiesOrnithineacidintegratedRiPPsconversionarginineresiduesnewlycharacterizedarginaseRecentlyflexibleexpressionsystemdescribedengineeringlanthipeptidesmodificationrelaxedspecificityablecatalyzerecognitiondesignedenablesUtilizingorderestablishedpositions812FurthermorepriorLanMeLanmayprecludespecificsitesantibacterialevaluatedindicatorstrainOverallsyntheticbiologypathwayconstructedhelpedelucidateaspectspreferencesofferingpracticalguidancecombinelantibioticBiosynthesisAntimicrobialOrnithine-ContainingAnaloguesUseCombinatorialBiosyntheticPathwaylanthipeptide

Similar Articles

Cited By