Incidence and effects of anomalies and hybridization on Alabama freshwater fish index of biotic integrity results.

Justin C Bagley, Alicia K Phillips, Sarah Buchanon, Patrick E O'Neil, Elizabeth S Huff
Author Information
  1. Justin C Bagley: Environmental Indicators Section, Field Operations Division, Alabama Department of Environmental Management, P.O. Box 301463, Montgomery, AL, 36130, USA. justin.bagley@adem.alabama.gov. ORCID
  2. Alicia K Phillips: Environmental Indicators Section, Field Operations Division, Alabama Department of Environmental Management, P.O. Box 301463, Montgomery, AL, 36130, USA. ORCID
  3. Sarah Buchanon: Environmental Indicators Section, Field Operations Division, Alabama Department of Environmental Management, P.O. Box 301463, Montgomery, AL, 36130, USA. ORCID
  4. Patrick E O'Neil: Geological Survey of Alabama, Walter B. Jones Hall, 420 Hackberry Lane, Tuscaloosa, AL, 35487, USA. ORCID
  5. Elizabeth S Huff: Environmental Indicators Section, Field Operations Division, Alabama Department of Environmental Management, P.O. Box 301463, Montgomery, AL, 36130, USA.

Abstract

The index of biotic integrity (IBI) is an effective multi-metric tool for assessing biological integrity of aquatic ecosystems and regulating water quality based on fish community surveys. Percentages of individuals with deformity, eroded fin, lesion, and tumor (DELT) anomalies are used in IBIs as a measure of fish health, while the percentage of hybrids reflects changes in reproductive isolation. When rare, these are combined into a joint '% DELT���+���hybrids' metric. We investigated the distribution and effects of this metric on overall fish IBI scores and biological condition ratings by analyzing data from 646 fish surveys from across Alabama. Following exploratory data analyses, we assessed the impacts of % DELT���+���hybrids by comparing IBI scores for sites before and after setting this metric to zero to simulate systematic error (no detection). While DELTs and other anomalies were infrequent (~���11% of sites), the two most commonly diseased fish species were Campostoma oligolepis (Leuciscidae) and Lepomis cyanellus (Centrarchidae). Hybrids were less frequent (~���7% of sites) than anomalies and were scored only for Lepomis sunfishes. Overall, we found no statistically significant differences in final IBI scores or biological condition ratings before and after anomaly and hybrid removal; however, removal led to increased IBI scores and biological condition ratings in 13.2% and���~���6% of surveys, respectively. These findings demonstrate that, while IBI outcomes appear relatively robust to systematic error in % DELT���+���hybrids, anomaly and hybrid observations can alter IBI outcomes, with important implications for fish-based bioassessments and water quality management.

Keywords

References

  1. Alabama Department of Environmental Management (ADEM) (2022). Alabama���s Water Quality Assessment and Listing Methodology. January 1, 2022. Alabama Department of Environmental Management, Montgomery, AL. https://adem.alabama.gov/programs/water/wquality/2022WAM.pdf Accessed March 2024.
  2. Allendorf, F. W., Leary, R. F., Spruell, P., & Wenburg, J. K. (2001). The problems with hybrids: Setting conservation guidelines. Trends in Ecology and Evolution, 16(11), 613���622. https://doi.org/10.1016/S0169-5347(01)02290-X [DOI: 10.1016/S0169-5347(01)02290-X]
  3. Bagley, J. C., Johnson, C. C., McGregor, S. W., Breitman, M. F., Armbruster, J. W., Harris, P. M., & O���Neil, P. E. (2023). Marine and freshwater fishes of Alabama: a revised checklist and discussion of taxonomic issues. Zootaxa, 5357(3), 301���341. https://doi.org/10.11646/zootaxa.5357.3.1
  4. Barbour, M. T., & Gerritsen, J. (1996). Subsampling of benthic samples: A defense of the fixed count method. Journal of the North American Benthological Society, 15, 386���391. https://doi.org/10.2307/1467285 [DOI: 10.2307/1467285]
  5. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2 edn. EPA 841-B-99���02, U.S. Environmental Protection Agency, Office of Water, Washington, D.C. https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1164.pdf Accessed January 2024.
  6. Baumann, P. C. (1992). The use of tumors in wild populations of fish to assess ecosystem health. Journal of Aquatic Ecosystem Health, 1, 135���146. https://doi.org/10.1007/BF00044045 [DOI: 10.1007/BF00044045]
  7. Baumann, P. C., Smith, W. D., & Ribick, M. (1982). Hepatic tumor rates and polynuclear aromatic hydrocarbon levels in two populations of brown bullhead (Ictalurus nebulosus). In M. W. Cooke, A. J. Dennis, & G. L. Fisher (Eds.), Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry (pp. 93���102). Battelle Press.
  8. Berra, T. M., & Au, R. J. (1978). Incidence of black spot disease in fishes in Cedar Fork Creek, Ohio. Ohio Journal of Science, 78(6), 318���322. https://kb.osu.edu/items/6c978e14-10b9-5fbf-aa30-64f0b440abdb Accessed April 13 2024.
  9. Bolnick, D. I. (2009). Hybridization and speciation in centrarchids. In S. J. Cooke & D. P. Phillip (Eds.), Centrarchid Fishes: Diversity, Biology, and Conservation (pp. 39���69). Blackwell-Wiley. [DOI: 10.1002/9781444316032.ch2]
  10. Boschung, H. T., Jr., & Mayden, R. L. (2004). Fishes of Alabama. Smithsonian Books.
  11. Cooke, S. J., Hanson, K. C., & Suski, C. D. (2009). Contemporary issues in centrarchid conservation and management. In S. J. Cooke & D. P. Phillip (Eds.), Centrarchid Fishes: Diversity, Biology, and Conservation (pp. 340���374). Blackwell-Wiley. [DOI: 10.1002/9781444316032.ch12]
  12. Davis, W. S., & Simon, T. P. (Eds.). (1995). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making (p. 415). Lewis Publishers.
  13. Goldberg, T. L., Grant, E. C., Inendino, K. R., Kassler, T. W., Claussen, J. E., & Philipp, D. P. (2005). Increased infectious disease susceptibility resulting from outbreeding depression. Conservation Biology, 19, 455���462. https://doi.org/10.1111/j.1523-1739.2005.00091.x [DOI: 10.1111/j.1523-1739.2005.00091.x]
  14. Hammer, ��., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1���9.
  15. Happel, A. (2019). A volunteer-populated online database provides evidence for a geographic pattern in symptoms of black spot infections. International Journal of Parasitology: Parasites and Wildlife, 10, 156���163. https://doi.org/10.1016/j.ijppaw.2019.08.003 [DOI: 10.1016/j.ijppaw.2019.08.003]
  16. Herricks, E. E., & Schaeffer, D. J. (1985). Can we optimize biomonitoring? Environmental Management, 9, 487���492. https://doi.org/10.1007/BF01867323 [DOI: 10.1007/BF01867323]
  17. Hilburn, B. G., Freeman, M. C., Lawson, K. M., Rider, S. J., & Johnston, C. E. (2023). Cryptic tolerant fish species and their potential effect on index of biotic integrity (IBI) scores. Ecological Indicators, 154, 110546. https://doi.org/10.1016/j.ecolind.2023.110546 [DOI: 10.1016/j.ecolind.2023.110546]
  18. Hughes, R. M., & Gammon, J. R. (1987). Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon. Transactions of the American Fisheries Society, 116, 196���209. https://doi.org/10.1577/1548-8659(1987)116/3C196:LCIFAA/3E2.0.CO;2 [DOI: 10.1577/1548-8659(1987)116/3C196]
  19. Hughes, R. M., Kaufmann, P. R., Herlihy, A. T., Kincaid, T. M., Reynolds, L., & Larsen, D. P. (1998). A process for developing and evaluating indices of fish assemblage integrity. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1618���1631. https://doi.org/10.1139/f98-060 [DOI: 10.1139/f98-060]
  20. Jelks, H. L., Walsh, S. J., Burkhead, N. M., Contreras-Balderas, S., Diaz-Pardo, E., Hendrickson, D. A., Lyons, J., Mandrak, N. E., McCormick, F., Nelson, J. S., & Platania, S. P. (2008). Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries, 33(8), 372���407. https://doi.org/10.1577/1548-8446-33.8.372 [DOI: 10.1577/1548-8446-33.8.372]
  21. Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6, 21���27. https://doi.org/10.1577/1548-8446(1981)006/3C0021:AOBIUF/3E2.0.CO;2 [DOI: 10.1577/1548-8446(1981)006/3C0021]
  22. Karr, J. R., & Chu, E. W. (1997). Biological monitoring and assessment: using multimetric indexes effectively. EPA 235-R97���001, University of Washington, Seattle, WA.
  23. Karr, J. R., & Dudley, D. R. (1981). Ecological perspective on water quality goals. Environmental Management, 5, 55���68. https://doi.org/10.1007/BF01866609 [DOI: 10.1007/BF01866609]
  24. Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity in running waters, a method and its rational. Special Publication 5, Illinois Natural History Survey, Champaign, IL.
  25. Loker, E. S., & Hofkin, B. V. (2023). Parasitology: A Conceptual Approach (2nd ed.). CRC Press.
  26. McAllister, C. T., Tumlison, R., Robison, H. W., Trauth, S. E. (2013). Initial survey on black-spot disease (Digenea: Strigeoidea: Diplostomidae) in select Arkansas fishes. Journal of the Arkansas Academy of Science, 67(1), 200���203. https://scholarworks.uark.edu/jaas/vol67/iss1/35 Accessed April 13 2024.
  27. McCormick, F. H., Hughes, R. M., Kaufmann, P. R., Peck, D. V., Stoddard, J. L., & Herlihy, A. T. (2001). Development of an index of biotic integrity for the mid-Atlantic highlands region. Transactions of the American Fisheries Society, 130, 857���877. https://doi.org/10.1577/1548-8659(2001)130/3C0857:DOAIOB/3E2.0.CO;2 [DOI: 10.1577/1548-8659(2001)130/3C0857]
  28. Mart��nez-Aquino, A., Ceccarelli, F. S., Eguiarte, L. E., V��zquez-Dom��nguez, E., & de Le��n, G. P. P. (2014). Do the historical biogeography and evolutionary history of the digenean Margotrema spp. across Central Mexico mirror those of their freshwater fish hosts (Goodeinae)? PLoS One, 9(7), e101700. https://doi.org/10.1371/journal.pone.0101700
  29. Meade, M., O���Kelley, J., Scull, G., & Turner, J. (2009). Fish assemblages in Talladega National Forest���s Choccolocco, Shoal, and Scarbrough creeks. Southeastern Naturalist, 8(4), 677���686. https://doi.org/10.1656/058.008.0409 [DOI: 10.1656/058.008.0409]
  30. Mebane, C. A., Maret, T. R., & Hughes, R. M. (2003). An index of biological integrity (IBI) for Pacific Northwest rivers. Transactions of the American Fisheries Society, 132, 239���261. https://doi.org/10.1577/1548-8659(2003)132/3C0239:AIOBII/3E2.0.CO;2 [DOI: 10.1577/1548-8659(2003)132/3C0239]
  31. Mettee, M. F., O���Neil, P. E., & Pierson, J. M. (1996). Fishes of Alabama and the Mobile Basin. Oxmoor House, Birmingham, AL.
  32. Meyers, T., Burton, T., Bentz, C., Ferguson, J., Stewart, D., & Starkey, N. (2019). Diseases of Wild and Cultured Fishes in Alaska. Alaska Department of Fish and Game, Anchorage, AK. https://www.adfg.alaska.gov/static/species/disease/pdfs/fish_disease_book.pdf
  33. Neff, B. D. (2004). Stabilizing selection on genomic divergence in a wild fish population. Proceedings of the National Academy of Sciences, USA, 101(8), 2381���2385. https://doi.org/10.1073/pnas.0307522100 [DOI: 10.1073/pnas.0307522100]
  34. Ohio EPA. (1987). Biological Criteria for the Protection of Aquatic Life: Vol. I: The Role of Biological Data in Water Quality Assessment. Ohio EPA, Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, OH.
  35. O���Neil, P. E., & Shepard, T. E. (2007). Delineation of ichthyoregions in Alabama for use with the index of biotic integrity. Open-File Report 0711, Geological Survey of Alabama, Tuscaloosa, AL.
  36. O���Neil, P. E., & Shepard, T. E. (2009). Calibration of the Index of Biotic Integrity for the Southern Plains ichthyoregion in Alabama. Open-File Report 0908, Geological Survey of Alabama, Tuscaloosa, AL.
  37. O���Neil, P. E., & Shepard, T. E. (2010). Calibration of the Index of Biotic Integrity for the Tennessee Valley ichthyoregion in Alabama. Open-File Report 1004, Geological Survey of Alabama, Tuscaloosa, AL.
  38. O���Neil, P. E., & Shepard, T. E. (2011a). Calibration of the index of biotic integrity for the Ridge and Valley/Piedmont ichthyoregion in Alabama. Open-File Report 1109, Geological Survey of Alabama, Tuscaloosa, AL.
  39. O���Neil, P. E., & Shepard, T. E. (2011b). Calibration of the index of biotic integrity for the Plateau ichthyoregion in Alabama. Open-File Report 1111, Geological Survey of Alabama, Tuscaloosa, AL.
  40. O���Neil, P. E., & Shepard, T. E. (2011c). Calibration of the index of biotic integrity for the Hills and Coastal Terraces ichthyoregion in Alabama. Open-File Report 1116, Geological Survey of Alabama, Tuscaloosa, AL.
  41. O���Neil, P. E., Shepard, T. E., & Cook, M. R. (2006). Habitat and biological assessment of the Terrapin Creek watershed and development of the Index of Biotic Integrity for the Coosa and Tallapoosa River systems. Open-File Report 0601, Geological Survey of Alabama, Tuscaloosa, AL.
  42. Philipp, D. P., Claussen, J. E., Kassler, T. W., & Epifanio, J. E. (2002). Mixing stocks of largemouth bass reduces fitness through outbreeding depression. In D. P. Philipp, & M. S. Ridgway (Eds.) Black Bass: Ecology, Conservation, and Management (pp. 349���363). American Fisheries Society Symposium 31, Bethesda, MD.
  43. Powell, J. R. (2003). Response of fish communities to cropland density and natural environmental setting in the Eastern Highland Rim Ecoregion of the Lower Tennessee River Basin, Alabama and Tennessee, 1999. Water-Resources Investigations Report 02���4268, National Water-Quality Assessment Program, U.S. Geological Survey, Nashville, TN, 48. pppubs.usgs.gov/wri/wri024268/pdf/wri024268.pdf Accessed April 10 2024.
  44. R Core Team. (2023). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Accessed November 6 2023.
  45. Ray, J. M., Hooper, C. G., Bailey, A. G., & Wilson, B. S. (2019). The fishes of Factory Creek (Shoal Creek system, Pickwick Lake subbasin) in the Tennessee River drainage. Southeastern Naturalist, 18(4), 589���601. https://doi.org/10.1656/058.018.0410 [DOI: 10.1656/058.018.0410]
  46. Reash, R. J., & Berra, T. M. (1989). Incidence of fin erosion and anomalous fishes in a polluted stream and a nearby clean stream. Water, Air, and Soil Pollution, 47, 47���63. https://doi.org/10.1007/BF00468996 [DOI: 10.1007/BF00468996]
  47. Ruaro, R., Gubiani, E. A., Hughes, R. M., & Mormul, R. P. (2020). Global trends and challenges in multimetric indices of biological condition. Ecological Indicators, 110, 105862. https://doi.org/10.1016/j.ecolind.2019.105862 [DOI: 10.1016/j.ecolind.2019.105862]
  48. Sala, O. E., Chapin, S. F., III., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770���1774. https://doi.org/10.1126/science.287.5459.1770 [DOI: 10.1126/science.287.5459.1770]
  49. Sanders, R. E., Miltner, R. J., Yoder, C. O., & Rankin, E. T. (1999). The use of external deformities, erosion, lesions, and tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: A case study of seven Ohio streams. In T. P. Simon (Ed.), Assessing the Sustainability and Biological Integrity of Water Resources using Fish Communities (pp. 225���248). CRC Press.
  50. Simon, T. P. (Ed.). (1999). Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press.
  51. Simon, T. P., & Burskey, J. L. (2016). Deformity, erosion, lesion, and tumor occurrence, fluctuating asymmetry, and population parameters for Bluntnose minnow (Pimephales notatus) as indicators of recovering water quality in a Great Lakes area of concern, USA. Archives of Environmental Contamination and Toxicology, 70, 181���191. https://doi.org/10.1007/s00244-015-0254-4 [DOI: 10.1007/s00244-015-0254-4]
  52. Simon, T. P., & Emery, E. B. (1995). Modification and assessment of an index of biotic integrity to quantify water resource quality in great rivers. Regulated Rivers: Research & Management, 11(3���4), 283���298. https://doi.org/10.1002/rrr.3450110305 [DOI: 10.1002/rrr.3450110305]
  53. U.S. Environmental Protection Agency (USEPA). (2002). Summary of Biological Assessment Programs and Biocriteria Development for States, Tribes, Territories, and Interstate Commissions: Streams and Wadeable Rivers. EPA-822-R-02���048. U.S. Environmental Protection Agency, Office of Environmental Information and Office of Water, Washington, D.C. https://www.epa.gov/sites/default/files/2018-10/documents/summary-biological-assessment-streams-wadeable-rivers.pdf Accessed January 2024.
  54. U.S. Environmental Protection Agency (USEPA). (2012). Water Quality Standards Handbook: Chapter 2: Designation of Uses. EPA-823-B-12���002, U.S. Environmental Protection Agency, Office of Water, Washington, D.C. https://www.epa.gov/sites/default/files/2014-10/documents/handbook-chapter2.pdf Accessed January 2024.
  55. Vadas, R. L., Jr., Hughes, R. M., Bae, Y. J., Baek, M. J., Gonz��les, O. C. B., Callisto, M., de Carvalho, D. R., Chen, K., Ferreira, M. T., Fierro, P., Harding, J. S., et al. (2022). Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. Water Biology and Security, 1(3), 100054. https://doi.org/10.1016/j.watbs.2022.100054 [DOI: 10.1016/j.watbs.2022.100054]
  56. Wan, H., Chizinski, C. J., Dolph, C. L., Vondracek, B., & Wilson, B. N. (2010). The impact of rare taxa on a fish index of biotic integrity. Ecological Indicators, 10(4), 781���788. https://doi.org/10.1016/j.ecolind.2009.12.006 [DOI: 10.1016/j.ecolind.2009.12.006]
  57. Williams, E. H. Jr., & Dyer, W. G. (1992). Some Digenea from freshwater fishes of Alabama and Florida including Allocreadium (Neoallocreadium) lucyae sp. n. (Digenea: Allocreadiidae). Journal of the Helminthological Society of Washington, 59(1), 111���116.
  58. Yoder, C. O., & Rankin, E. T. (1999). Biological criteria for water resource management. In P. C. Schulze (Ed.), Measures of Environmental Performance and Ecosystem Condition (pp. 227���259). National Academy Press.

MeSH Term

Animals
Alabama
Fishes
Environmental Monitoring
Fresh Water
Ecosystem
Hybridization, Genetic
Water Quality
Incidence

Word Cloud

Created with Highcharts 10.0.0IBIfishanomaliesbiologicalscoresintegritysurveysmetricconditionratingsAlabamasitesindexbioticwaterqualityDELTeffectsdata%DELT���+���hybridssystematicerrorLepomisanomalyhybridremovaloutcomeseffectivemulti-metrictoolassessingaquaticecosystemsregulatingbasedcommunityPercentagesindividualsdeformityerodedfinlesiontumorusedIBIsmeasurehealthpercentagehybridsreflectschangesreproductiveisolationrarecombinedjoint'%DELT���+���hybrids'investigateddistributionoverallanalyzing646acrossFollowingexploratoryanalysesassessedimpactscomparingsettingzerosimulatedetectionDELTsinfrequent~���11%twocommonlydiseasedspeciesCampostomaoligolepisLeuciscidaecyanellusCentrarchidaeHybridslessfrequent~���7%scoredsunfishesOverallfoundstatisticallysignificantdifferencesfinalhoweverledincreased132%and���~���6%respectivelyfindingsdemonstrateappearrelativelyrobustobservationscanalterimportantimplicationsfish-basedbioassessmentsmanagementIncidencehybridizationfreshwaterresultsBiomonitoringFishcommunitiesHybridization

Similar Articles

Cited By

No available data.