INSPIRE: Single-beam probed complementary vibrational bioimaging.

Pengcheng Fu, Yongqing Zhang, Siming Wang, Xin Ye, Yunhong Wu, Mengfei Yu, Shiyao Zhu, Hyeon Jeong Lee, Delong Zhang
Author Information
  1. Pengcheng Fu: Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China. ORCID
  2. Yongqing Zhang: Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China. ORCID
  3. Siming Wang: Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China.
  4. Xin Ye: Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China. ORCID
  5. Yunhong Wu: Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China.
  6. Mengfei Yu: Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China. ORCID
  7. Shiyao Zhu: Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China.
  8. Hyeon Jeong Lee: College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China. ORCID
  9. Delong Zhang: Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China. ORCID

Abstract

Molecular spectroscopy provides intrinsic contrast for in situ chemical imaging, linking the physiochemical properties of biomolecules to the functions of living systems. While stimulated Raman imaging has found successes in deciphering biological machinery, many vibrational modes are Raman inactive or weak, limiting the broader impact of the technique. It can potentially be mitigated by the spectral complementarity from infrared (IR) spectroscopy. However, the vastly different optical windows make it challenging to develop such a platform. Here, we introduce in situ pump-probe IR and Raman excitation (INSPIRE) microscopy, a nascent cross-modality spectroscopic imaging approach by encoding the ultrafast Raman and the IR photothermal relaxation into a single probe beam for simultaneous detection. INSPIRE inherits the merits of complementary modalities and demonstrates high-content molecular imaging of chemicals, cells, tissues, and organisms. Furthermore, INSPIRE applies to label-free and molecular tag imaging, offering possibilities for optical sensing and imaging in biomedicine and materials science.

References

  1. Nat Photonics. 2023 Oct;17(10):846-855 [PMID: 38162388]
  2. Light Sci Appl. 2019 Dec 11;8:116 [PMID: 31839936]
  3. Sci Adv. 2024 Feb 23;10(8):eadj7944 [PMID: 38381817]
  4. Trends Biotechnol. 2014 May;32(5):254-62 [PMID: 24703620]
  5. Nat Photonics. 2019 Sep;13:609-615 [PMID: 31440304]
  6. Nat Methods. 2023 Mar;20(3):448-458 [PMID: 36797410]
  7. Anal Chem. 2019 Aug 20;91(16):10750-10756 [PMID: 31313580]
  8. Bioessays. 2021 May;43(5):e2000273 [PMID: 33629755]
  9. Chem Soc Rev. 2010 Dec;39(12):4718-30 [PMID: 20959916]
  10. J Am Chem Soc. 2021 Jul 28;143(29):10809-10815 [PMID: 34270255]
  11. Adv Sci (Weinh). 2022 Feb;9(5):e2104379 [PMID: 34927370]
  12. RSC Adv. 2018 Jul 20;8(46):25888-25908 [PMID: 35541973]
  13. Nature. 2021 Jun;594(7862):201-206 [PMID: 34108694]
  14. Light Sci Appl. 2020 Jan 28;9:11 [PMID: 32025294]
  15. Analyst. 2011 Jun 21;136(12):2542-51 [PMID: 21526247]
  16. Nat Commun. 2019 Sep 27;10(1):4411 [PMID: 31562337]
  17. Anal Chem. 2020 Aug 18;92(16):11297-11304 [PMID: 32683857]
  18. Chem Soc Rev. 2014 Nov 21;43(22):7624-63 [PMID: 24424375]
  19. Angew Chem Int Ed Engl. 2008;47(48):9256-9 [PMID: 18973217]
  20. Opt Lett. 2011 Oct 1;36(19):3891-3 [PMID: 21964132]
  21. Science. 2002 Aug 16;297(5584):1160-3 [PMID: 12183624]
  22. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17149-53 [PMID: 17088534]
  23. Sci Adv. 2016 Sep 28;2(9):e1600521 [PMID: 27704043]
  24. Nat Commun. 2021 Dec 7;12(1):7097 [PMID: 34876556]
  25. Anal Chem. 2018 Feb 6;90(3):1444-1463 [PMID: 29281255]
  26. Nat Commun. 2022 May 12;13(1):2656 [PMID: 35551449]
  27. Sci Adv. 2023 Jun 16;9(24):eadg8814 [PMID: 37315131]
  28. Sci Adv. 2015 Oct 30;1(9):e1500738 [PMID: 26601311]
  29. Nat Photonics. 2014 Feb 1;8(2):153-159 [PMID: 25313312]
  30. J Biophotonics. 2012 Oct;5(10):801-7 [PMID: 22389310]
  31. Nat Commun. 2024 Jan 8;15(1):350 [PMID: 38191490]
  32. Light Sci Appl. 2018 Oct 24;7:81 [PMID: 30374403]
  33. Nat Photonics. 2011;5(2):103-109 [PMID: 23015809]
  34. Angew Chem Int Ed Engl. 2009;48(47):8990-4 [PMID: 19824032]
  35. Nat Methods. 2019 Dec;16(12):1209-1212 [PMID: 31754258]
  36. Anal Chem. 2008 Dec 1;80(23):9065-72 [PMID: 18983174]
  37. Anal Chem. 2021 Mar 2;93(8):3938-3950 [PMID: 33595297]
  38. Chem Sci. 2022 Jun 29;13(27):8171-8179 [PMID: 35919437]
  39. Light Sci Appl. 2023 Jul 19;12(1):174 [PMID: 37463888]
  40. Biomed Opt Express. 2018 Sep 13;9(10):4807-4817 [PMID: 30319904]
  41. Nat Chem. 2010 May;2(5):410-6 [PMID: 20414244]
  42. Nat Methods. 2009 Dec;6(12):923-7 [PMID: 19881510]
  43. J Phys Chem B. 2013 Apr 25;117(16):4634-40 [PMID: 23256635]
  44. Cell. 2015 Oct 8;163(2):340-53 [PMID: 26451484]
  45. J Am Chem Soc. 2021 Aug 4;143(30):11490-11499 [PMID: 34264654]
  46. Light Sci Appl. 2023 Jan 26;12(1):29 [PMID: 36702815]
  47. Annu Rev Biophys. 2019 May 6;48:347-369 [PMID: 30892920]
  48. Sci Adv. 2023 Oct 27;9(43):eadi2181 [PMID: 37889965]
  49. Anal Bioanal Chem. 2014 Sep;406(24):5795-803 [PMID: 25023968]
  50. J Phys Chem Lett. 2020 Dec 3;11(23):10233-10241 [PMID: 33206530]
  51. J Biophotonics. 2020 May;13(5):e201960094 [PMID: 31999078]
  52. Sci Adv. 2021 May 14;7(20): [PMID: 33990332]
  53. Cells. 2023 Jul 27;12(15): [PMID: 37566029]
  54. Nat Photonics. 2016 Aug;10(8):534-540 [PMID: 27668009]
  55. Nat Commun. 2019 Nov 21;10(1):5318 [PMID: 31754221]
  56. BME Front. 2021 Oct 8;2021:9860123 [PMID: 37849907]
  57. J Phys Chem Lett. 2020 Sep 3;11(17):7083-7089 [PMID: 32786960]
  58. Light Sci Appl. 2015;4: [PMID: 26167336]
  59. Nat Rev Drug Discov. 2006 May;5(5):387-98 [PMID: 16672925]

MeSH Term

Spectrum Analysis, Raman
Vibration
Humans
Molecular Imaging
Animals
Mice
Spectrophotometry, Infrared

Word Cloud

Created with Highcharts 10.0.0imagingRamanIRINSPIREspectroscopysituvibrationalopticalcomplementarymolecularMolecularprovidesintrinsiccontrastchemicallinkingphysiochemicalpropertiesbiomoleculesfunctionslivingsystemsstimulatedfoundsuccessesdecipheringbiologicalmachinerymanymodesinactiveweaklimitingbroaderimpacttechniquecanpotentiallymitigatedspectralcomplementarityinfraredHowevervastlydifferentwindowsmakechallengingdevelopplatformintroducepump-probeexcitationmicroscopynascentcross-modalityspectroscopicapproachencodingultrafastphotothermalrelaxationsingleprobebeamsimultaneousdetectioninheritsmeritsmodalitiesdemonstrateshigh-contentchemicalscellstissuesorganismsFurthermoreapplieslabel-freetagofferingpossibilitiessensingbiomedicinematerialsscienceINSPIRE:Single-beamprobedbioimaging

Similar Articles

Cited By