Absolute signal of stimulated Raman scattering microscopy: A quantum electrodynamics treatment.

Wei Min, Xin Gao
Author Information
  1. Wei Min: Department of Chemistry, Columbia University, New York, NY 10027, USA. ORCID
  2. Xin Gao: Department of Chemistry, Columbia University, New York, NY 10027, USA. ORCID

Abstract

The advent of stimulated Raman scattering (SRS) microscopy has launched a rapidly growing field in chemical imaging with broad impact. Although the physical picture seems to be well understood from classical models, prediction of absolute SRS signals remains a challenge. Here, we present a quantum electrodynamics treatment of the newly introduced stimulated Raman cross section. The resulting formula for calculating the absolute SRS signal is simple and differs from the commonly used relations by only one factor. We demonstrate the utility of this formula in a broad range of crucial applications of SRS microscopy, including stimulated Raman enhancement factor (>10 times), signal-to-noise ratio (SNR) of typical imaging experiments, population saturation under high power excitation, and energy deposition during stimulated Raman photothermal microscopy. In particular, the theory predicts that SRS microscopy is almost always more sensitive than spontaneous Raman microscopy for chemical imaging.

References

  1. Acc Mater Res. 2023 Jul 31;4(9):726-728 [PMID: 37766942]
  2. Anal Chem. 2014 Aug 5;86(15):7782-7 [PMID: 24975056]
  3. Annu Rev Phys Chem. 2007;58:461-88 [PMID: 17105414]
  4. J Biophotonics. 2012 May;5(5-6):387-95 [PMID: 22344721]
  5. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  6. J Phys Chem Lett. 2011 May 9;2(11):1248-1253 [PMID: 21731798]
  7. Nat Biotechnol. 2003 Nov;21(11):1369-77 [PMID: 14595365]
  8. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  9. Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):269-289 [PMID: 35300525]
  10. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  11. J Chem Phys. 2023 Nov 21;159(19): [PMID: 37965998]
  12. Methods Appl Fluoresc. 2016 Nov 11;4(4):045001 [PMID: 28192304]
  13. Opt Express. 2009 Mar 2;17(5):3651-8 [PMID: 19259205]
  14. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  15. Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2300582121 [PMID: 38190543]
  16. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  17. Sci Adv. 2023 Oct 27;9(43):eadi2181 [PMID: 37889965]
  18. Nano Lett. 2024 Jan 24;24(3):1024-1033 [PMID: 38207237]
  19. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  20. Anal Chem. 2020 Aug 4;92(15):10686-10692 [PMID: 32598135]
  21. Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2309811121 [PMID: 38252832]
  22. Chem Rev. 2017 Apr 12;117(7):5070-5094 [PMID: 27966347]
  23. J Phys Chem Lett. 2023 Jun 22;14(24):5701-5708 [PMID: 37318158]
  24. Biomacromolecules. 2019 Oct 14;20(10):4008-4014 [PMID: 31408325]

Grants

  1. R01 EB029523/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0RamanstimulatedSRSmicroscopyimagingscatteringchemicalbroadabsolutequantumelectrodynamicstreatmentformulasignalfactoradventlaunchedrapidlygrowingfieldimpactAlthoughphysicalpictureseemswellunderstoodclassicalmodelspredictionsignalsremainschallengepresentnewlyintroducedcrosssectionresultingcalculatingsimpledifferscommonlyusedrelationsonedemonstrateutilityrangecrucialapplicationsincludingenhancement>10timessignal-to-noiseratioSNRtypicalexperimentspopulationsaturationhighpowerexcitationenergydepositionphotothermalparticulartheorypredictsalmostalwayssensitivespontaneousAbsolutemicroscopy:

Similar Articles

Cited By

No available data.