Unexpected vulnerability of to polymyxin B under anaerobic condition.

Yongjun Son, Bitnara Kim, Pureun Kim, Jihyeon Min, Yerim Park, Jihye Yang, Wonjae Kim, Masanori Toyofuku, Woojun Park
Author Information
  1. Yongjun Son: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID
  2. Bitnara Kim: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID
  3. Pureun Kim: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID
  4. Jihyeon Min: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID
  5. Yerim Park: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID
  6. Jihye Yang: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID
  7. Wonjae Kim: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID
  8. Masanori Toyofuku: Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan. ORCID
  9. Woojun Park: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea. ORCID

Abstract

Gram-positive exhibited higher susceptibility (>4-fold) to polymyxin B (PMB), the canonical antimicrobial peptide against Gram-negative bacteria, under anaerobic condition than aerobic condition. Anaerobically grown exhibited high vulnerability to PMB, leading to alteration of cell surface and morphology, as observed based on their high dansyl-PMB affinity (>2.9-fold), a proportion (>8.5-fold) of propidium iodide-stained cells, and observation of scanning electron microscopy results. Interestingly, our transcriptomic and chemical analyses revealed that enterocin B, produced anaerobically, imposes a burden on the cellular envelope when cells are exposed to PMB. This scenario was also supported by PMB susceptibility tests and killing curves, which showed that Δ knockout mutant cells were more resistant to PMB (32 µg/mL) compared to wild-type cells (4 µg/mL) under anaerobic condition. Fluorescent D-amino acid and BOCILLIN™-fluorescent profiling of transpeptidase activities in Δ mutant cells under anaerobic condition revealed similar levels of activity to those observed in WT cells under aerobic condition. The high level of secreted bacteriocins in WT under anaerobic condition likely led to significant membrane depolarization and loosening of the peptidoglycan layer, making the cells more permeable to PMB. Overall, our findings suggest that anaerobically produced bacteriocins, in conjunction with PMB, contribute to the killing of by destabilizing its cell envelope.

Keywords

References

  1. Int J Antimicrob Agents. 2017 Mar;49(3):355-363 [PMID: 28188831]
  2. Mol Microbiol. 2017 Apr;104(2):319-333 [PMID: 28118510]
  3. Appl Environ Microbiol. 2015 Jul;81(14):4819-26 [PMID: 25956765]
  4. PLoS One. 2015 Aug 07;10(8):e0135198 [PMID: 26252512]
  5. Nat Commun. 2023 Sep 11;14(1):5584 [PMID: 37696800]
  6. Extremophiles. 2017 Jul;21(4):651-670 [PMID: 28508135]
  7. Nat Rev Microbiol. 2005 Oct;3(10):777-88 [PMID: 16205711]
  8. J Biol Chem. 2000 Jun 2;275(22):16490-6 [PMID: 10748168]
  9. J Biol Chem. 1999 Mar 26;274(13):8405-10 [PMID: 10085071]
  10. PLoS One. 2011 Jan 20;6(1):e16053 [PMID: 21283800]
  11. Microbiology (Reading). 1994 Mar;140 ( Pt 3):517-26 [PMID: 8012574]
  12. Sci Rep. 2022 May 19;12(1):8485 [PMID: 35590028]
  13. Antimicrob Agents Chemother. 2019 Sep 23;63(10): [PMID: 31332075]
  14. Elife. 2019 Apr 09;8: [PMID: 30963998]
  15. Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26925-26932 [PMID: 31818937]
  16. Nat Chem Biol. 2017 Jul;13(7):793-798 [PMID: 28553948]
  17. Nat Rev Microbiol. 2008 Mar;6(3):222-33 [PMID: 18264115]
  18. mSphere. 2016 Jul 27;1(4): [PMID: 27471750]
  19. mBio. 2020 Oct 13;11(5): [PMID: 33051371]
  20. Biochemistry. 2008 Dec 2;47(48):12661-3 [PMID: 18989934]
  21. Biochim Biophys Acta. 2016 May;1858(5):936-46 [PMID: 26577273]
  22. Biochim Biophys Acta. 2015 Jun;1848(6):1367-75 [PMID: 25782727]
  23. J Biol Chem. 2012 Jul 13;287(29):24492-504 [PMID: 22621928]
  24. J Clin Microbiol. 2009 Sep;47(9):2802-11 [PMID: 19605585]
  25. mSystems. 2017 Aug 29;2(4): [PMID: 28861525]
  26. PLoS Pathog. 2009 Nov;5(11):e1000660 [PMID: 19915718]
  27. Microbiol Spectr. 2014 Nov;5(6): [PMID: 29125098]
  28. PLoS One. 2014 Feb 20;9(2):e89209 [PMID: 24586598]
  29. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1578-E1587 [PMID: 29382755]
  30. J Bacteriol. 2006 Feb;188(3):902-8 [PMID: 16428393]
  31. Environ Microbiol. 2019 Aug;21(8):3076-3090 [PMID: 31173438]
  32. Appl Microbiol Biotechnol. 2011 Oct;92(1):1-11 [PMID: 21796380]
  33. mBio. 2022 Nov 10;13(6):e0229422 [PMID: 36354750]
  34. Front Med Technol. 2020 Dec 11;2:610997 [PMID: 35047892]
  35. Microb Genom. 2023 Aug;9(8): [PMID: 37589545]
  36. Appl Environ Microbiol. 2021 Aug 26;87(18):e0084421 [PMID: 34232061]
  37. J Photochem Photobiol B. 2018 Apr;181:150-156 [PMID: 29567316]
  38. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288-1301 [PMID: 27573805]
  39. Antimicrob Agents Chemother. 2015;59(6):3548-55 [PMID: 25845878]
  40. J Microbiol. 2021 Jun;59(6):535-545 [PMID: 33877574]
  41. mBio. 2016 Jun 21;7(3): [PMID: 27329754]
  42. mSystems. 2023 Feb 23;8(1):e0089722 [PMID: 36622157]
  43. Mol Microbiol. 2012 Sep;85(6):1119-32 [PMID: 22780862]
  44. Microbiol Spectr. 2022 Oct 26;10(5):e0181622 [PMID: 36040162]
  45. J Biosci. 2021;46: [PMID: 34475315]
  46. Microbiol Spectr. 2022 Aug 31;10(4):e0129522 [PMID: 35861511]
  47. Microbes Infect. 2021 Nov-Dec;23(9-10):104847 [PMID: 34116163]
  48. Nat Commun. 2019 Jun 21;10(1):2733 [PMID: 31227716]
  49. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10): [PMID: 27503996]
  50. Clin Microbiol Rev. 2017 Apr;30(2):557-596 [PMID: 28275006]
  51. ACS Chem Biol. 2014 May 16;9(5):1172-7 [PMID: 24601489]
  52. Nat Commun. 2022 Dec 27;13(1):7962 [PMID: 36575173]
  53. Clin Microbiol Rev. 2019 Jan 30;32(2): [PMID: 30700430]
  54. Microbiol Spectr. 2021 Oct 31;9(2):e0029921 [PMID: 34643411]
  55. Clin Microbiol Infect. 2010 Jun;16(6):555-62 [PMID: 20569266]
  56. Sci Rep. 2023 Sep 11;13(1):14970 [PMID: 37697016]
  57. Appl Environ Microbiol. 2024 Mar 20;90(3):e0209123 [PMID: 38412007]
  58. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  59. Peptides. 2011 Oct;32(10):2021-6 [PMID: 21930172]
  60. mBio. 2021 Dec 21;12(6):e0278621 [PMID: 34872350]
  61. Expert Rev Anti Infect Ther. 2014 Oct;12(10):1221-36 [PMID: 25199988]
  62. Cell. 2017 May 18;169(5):849-861.e13 [PMID: 28502769]
  63. Nat Struct Mol Biol. 2004 Oct;11(10):963-7 [PMID: 15361862]
  64. Sci Total Environ. 2022 Mar 10;811:152331 [PMID: 34915016]
  65. Front Microbiol. 2021 Aug 18;12:727692 [PMID: 34489917]
  66. J Antimicrob Chemother. 2018 Dec 1;73(12):3385-3390 [PMID: 30215733]
  67. ACS Infect Dis. 2021 Sep 10;7(9):2746-2754 [PMID: 34387988]
  68. J Bacteriol. 2003 Sep;185(17):5310-3 [PMID: 12923108]
  69. J Biol Chem. 2002 Sep 27;277(39):35801-7 [PMID: 12077139]
  70. Cell Chem Biol. 2019 Oct 17;26(10):1355-1364.e4 [PMID: 31402316]
  71. J Hazard Mater. 2023 Apr 15;448:130932 [PMID: 36860069]
  72. Cell Discov. 2021 Apr 6;7(1):20 [PMID: 33820910]

MeSH Term

Enterococcus faecium
Polymyxin B
Anaerobiosis
Anti-Bacterial Agents
Microbial Sensitivity Tests
Bacteriocins
Cell Membrane
Drug Resistance, Bacterial

Chemicals

Polymyxin B
Anti-Bacterial Agents
Bacteriocins

Word Cloud

Created with Highcharts 10.0.0PMBconditioncellsanaerobicBpolymyxinhighexhibitedsusceptibilityaerobicvulnerabilitycellobservedrevealedproducedanaerobicallyenvelopekillingΔmutantWTbacteriocinspeptidoglycanGram-positivehigher>4-foldcanonicalantimicrobialpeptideGram-negativebacteriaAnaerobicallygrownleadingalterationsurfacemorphologybaseddansyl-PMBaffinity>29-foldproportion>85-foldpropidiumiodide-stainedobservationscanningelectronmicroscopyresultsInterestinglytranscriptomicchemicalanalysesenterocinimposesburdencellularexposedscenarioalsosupportedtestscurvesshowedknockoutresistant32 µg/mLcomparedwild-type4 µg/mLFluorescentD-aminoacidBOCILLIN™-fluorescentprofilingtranspeptidaseactivitiessimilarlevelsactivitylevelsecretedlikelyledsignificantmembranedepolarizationlooseninglayermakingpermeableOverallfindingssuggestconjunctioncontributedestabilizingUnexpectedEnterococcusfaeciumantibioticresistancebacteriocinfacultativeanaerobe

Similar Articles

Cited By