Comparative analysis of antimicrobial resistance and genetic diversity of isolates obtained from swine within the United States.

Tracy L Nicholson, Sarah M Shore
Author Information
  1. Tracy L Nicholson: National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.
  2. Sarah M Shore: National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.

Abstract

Introduction: is bacterial pathogen that is pervasive in swine populations and serves multiple roles in respiratory disease.
Methods: This study utilized whole-genome sequencing (WGS) analysis to assess the sequence type (ST), identify the genetic diversity of genes predicted to encode regulatory and virulence factors, and evaluated any potential antimicrobial resistance harbored by isolates obtained from swine within the U.S.
Results: While a generally high degree of genomic conservation was observed among the swine isolates, genetic diversity was identified within the locus and among the sequence type six (ST6) isolates. The majority of isolates exhibited phenotypic resistance to four antibiotic classes, however, only three antimicrobial resistance genes were identified.
Discussion: Combined the data suggests that isolates are not serving as a source of antimicrobial resistance gene transference in the swine production environment.

Keywords

References

  1. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  2. Am J Vet Res. 2001 Apr;62(4):521-5 [PMID: 11327458]
  3. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  4. Vet J. 2020 May - Jun;259-260:105474 [PMID: 32553237]
  5. Infect Immun. 2017 Jul 19;85(8): [PMID: 28559403]
  6. Vet Rec. 2008 Mar 1;162(9):267-71 [PMID: 18310558]
  7. mBio. 2016 Mar 22;7(2):e01975 [PMID: 27006457]
  8. J Biol Chem. 2010 Aug 27;285(35):26869-26877 [PMID: 20592026]
  9. Am J Vet Res. 1966 Mar;27(117):457-66 [PMID: 5335278]
  10. Front Microbiol. 2018 Sep 11;9:2102 [PMID: 30258418]
  11. Cell. 1995 Feb 24;80(4):611-20 [PMID: 7867068]
  12. Am J Vet Res. 1989 Jul;50(7):1037-43 [PMID: 2774320]
  13. J Am Vet Med Assoc. 1962 Dec 15;141:1467-8 [PMID: 14024006]
  14. J Antimicrob Chemother. 2007 Mar;59(3):396-402 [PMID: 17261565]
  15. Infect Immun. 1999 Aug;67(8):3763-7 [PMID: 10417135]
  16. Nucleic Acids Res. 2016 Aug 19;44(14):6614-24 [PMID: 27342282]
  17. Infect Immun. 2009 Aug;77(8):3249-57 [PMID: 19528223]
  18. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  19. J Antimicrob Chemother. 2006 Jul;58(1):225-7 [PMID: 16636083]
  20. Vet Microbiol. 2008 Apr 1;128(1-2):36-47 [PMID: 18022332]
  21. Infect Immun. 1992 Feb;60(2):550-6 [PMID: 1730489]
  22. Infect Immun. 2014 Mar;82(3):1092-103 [PMID: 24366249]
  23. Vet Microbiol. 2004 Mar 26;99(1):75-8 [PMID: 15019114]
  24. J Bacteriol. 2008 Aug;190(15):5502-11 [PMID: 18556799]
  25. Front Microbiol. 2022 Nov 10;13:1043529 [PMID: 36439859]
  26. Vet Rec. 1990 Jan 27;126(4):93 [PMID: 2309397]
  27. J Am Vet Med Assoc. 1961 Oct 15;139:897-9 [PMID: 13888520]
  28. Am J Vet Res. 1966 Mar;27(117):467-72 [PMID: 6006494]
  29. Microbiol Rev. 1980 Dec;44(4):722-38 [PMID: 7010115]
  30. Clin Microbiol Rev. 2005 Apr;18(2):326-82 [PMID: 15831828]
  31. PLoS One. 2015 Aug 14;10(8):e0135703 [PMID: 26275219]
  32. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  33. Am J Vet Res. 2000 Aug;61(8):892-9 [PMID: 10951978]
  34. Clin Microbiol Rev. 1991 Jul;4(3):243-55 [PMID: 1889042]
  35. Genome Announc. 2015 Apr 23;3(2): [PMID: 25908122]
  36. Microbiol Spectr. 2018 Jul;6(4): [PMID: 30027886]
  37. Trends Microbiol. 2003 Aug;11(8):367-73 [PMID: 12915094]
  38. Genome Announc. 2014 May 15;2(3): [PMID: 24831150]
  39. Front Microbiol. 2024 Mar 07;15:1305097 [PMID: 38516008]
  40. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  41. Microbiol Resour Announc. 2020 Jan 23;9(4): [PMID: 31974149]
  42. Antimicrob Agents Chemother. 2005 Jun;49(6):2565-7 [PMID: 15917575]
  43. PLoS Comput Biol. 2022 Jan 24;18(1):e1009802 [PMID: 35073327]
  44. Vet Microbiol. 2007 Dec 15;125(3-4):284-9 [PMID: 17624695]
  45. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  46. Res Vet Sci. 1983 May;34(3):287-95 [PMID: 6878879]
  47. FEMS Microbiol Lett. 2001 Dec 18;205(2):283-90 [PMID: 11750817]
  48. Nat Genet. 2003 Sep;35(1):32-40 [PMID: 12910271]
  49. Microb Pathog. 2010 Nov;49(5):237-45 [PMID: 20558274]
  50. J Antimicrob Chemother. 2017 Jul 1;72(7):1886-1892 [PMID: 28333320]
  51. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31427293]
  52. PLoS Comput Biol. 2020 Jun 26;16(6):e1007981 [PMID: 32589667]
  53. Nat Commun. 2022 Jul 1;13(1):3807 [PMID: 35778384]
  54. Porcine Health Manag. 2023 Oct 19;9(1):47 [PMID: 37858281]
  55. Vet Microbiol. 2016;182:87-94 [PMID: 26711033]
  56. BMC Evol Biol. 2013 Sep 25;13:209 [PMID: 24067113]
  57. Infect Immun. 2009 May;77(5):2136-46 [PMID: 19237531]
  58. BMC Genomics. 2007 Jul 06;8:220 [PMID: 17617915]
  59. Nord Vet Med. 1981 Dec;33(12):513-22 [PMID: 7335484]
  60. J Comp Pathol. 2019 Feb;167:41-45 [PMID: 30898296]
  61. Infect Immun. 2012 Mar;80(3):1025-36 [PMID: 22158743]
  62. Res Vet Sci. 1989 Jul;47(1):48-53 [PMID: 2772406]

Word Cloud

Created with Highcharts 10.0.0swineresistanceisolatesantimicrobialgeneticsequencetypediversitywithinwhole-genomesequencingWGSanalysisSTgenesvirulenceobtainedamongidentifiedIntroduction:bacterialpathogenpervasivepopulationsservesmultiplerolesrespiratorydiseaseMethods:studyutilizedassessidentifypredictedencoderegulatoryfactorsevaluatedpotentialharboredUSResults:generallyhighdegreegenomicconservationobservedlocussixST6majorityexhibitedphenotypicfourantibioticclasseshoweverthreeDiscussion:CombineddatasuggestsservingsourcegenetransferenceproductionenvironmentComparativeUnitedStatesBordetellabronchisepticaAMRaveragenucleotideidentityANImobileelementMGEfactor

Similar Articles

Cited By