A tutorial on pharmacometric Markov models.

Qing Xi Ooi, Elodie Plan, Martin Bergstrand
Author Information
  1. Qing Xi Ooi: Pharmetheus AB, Uppsala, Sweden. ORCID
  2. Elodie Plan: Pharmetheus AB, Uppsala, Sweden. ORCID
  3. Martin Bergstrand: Pharmetheus AB, Uppsala, Sweden. ORCID

Abstract

The Markov chain is a stochastic process in which the future value of a variable is conditionally independent of the past, given its present value. Data with Markovian features are characterized by: frequent observations relative to the expected changes in values, many consecutive same-category or similar-value observations at the individual level, and a positive correlation observed between the current and previous values for that variable. In drug development and clinical settings, the data available commonly present Markovian features and are increasingly often modeled using Markov elements or dedicated Markov models. This tutorial presents the main characteristics, evaluations, and applications of various Markov modeling approaches including the discrete-time Markov models (DTMM), continuous-time Markov models (CTMM), hidden Markov models, and item-response theory model with Markov sub-models. The tutorial has a specific emphasis on the use of DTMM and CTMM for modeling ordered-categorical data with Markovian features. Although the main body of this tutorial is written in a software-neutral manner, annotated NONMEM code for all key Markov models is included in the Supplementary Information.

References

  1. Clin Pharmacol Ther. 2009 Jul;86(1):77-83 [PMID: 19387437]
  2. Cancer Chemother Pharmacol. 2020 Sep;86(3):435-444 [PMID: 32852627]
  3. CPT Pharmacometrics Syst Pharmacol. 2022 Dec;11(12):1592-1603 [PMID: 36125910]
  4. CPT Pharmacometrics Syst Pharmacol. 2025 Feb;14(2):197-216 [PMID: 39670923]
  5. J Clin Pharmacol. 2012 Jun;52(6):880-92 [PMID: 21646441]
  6. Biom J. 2020 May;62(3):550-567 [PMID: 31310368]
  7. J Pharmacokinet Pharmacodyn. 2011 Dec;38(6):697-711 [PMID: 21909798]
  8. Pharm Res. 2005 Aug;22(8):1247-58 [PMID: 16078134]
  9. CPT Pharmacometrics Syst Pharmacol. 2014 Aug 13;3:e129 [PMID: 25116273]
  10. J Pharmacokinet Pharmacodyn. 2016 Jun;43(3):305-14 [PMID: 27165151]
  11. J Pharmacokinet Pharmacodyn. 2008 Oct;35(5):483-501 [PMID: 18810610]
  12. J Pharmacokinet Pharmacodyn. 2009 Oct;36(5):461-77 [PMID: 19798550]
  13. CPT Pharmacometrics Syst Pharmacol. 2021 Oct;10(10):1255-1266 [PMID: 34313026]
  14. Clin Pharmacol Ther. 2023 Apr;113(4):851-858 [PMID: 36606486]
  15. J Pharmacokinet Pharmacodyn. 2024 Feb;51(1):65-75 [PMID: 37943398]
  16. Integr Cancer Ther. 2023 Jan-Dec;22:15347354231168368 [PMID: 37077136]
  17. Cephalalgia. 2006 Apr;26(4):416-22 [PMID: 16556242]
  18. AAPS J. 2017 Sep;19(5):1424-1435 [PMID: 28634883]
  19. CPT Pharmacometrics Syst Pharmacol. 2019 Apr;8(4):230-239 [PMID: 30681293]
  20. CPT Pharmacometrics Syst Pharmacol. 2023 Feb;12(2):154-167 [PMID: 36330695]
  21. Clin Pharmacol Ther. 2000 Aug;68(2):175-88 [PMID: 10976549]
  22. Clin Pharmacol Ther. 2012 May;91(5):820-8 [PMID: 22433987]
  23. CPT Pharmacometrics Syst Pharmacol. 2013 Dec 04;2:e85 [PMID: 24304978]
  24. Pharm Res. 2020 Sep 7;37(10):189 [PMID: 32895855]
  25. Clin Pharmacol Ther. 2009 Apr;85(4):418-25 [PMID: 19078948]
  26. CPT Pharmacometrics Syst Pharmacol. 2014 Oct 29;3:e143 [PMID: 25353186]
  27. AAPS J. 2019 Jun 6;21(4):74 [PMID: 31172350]
  28. Clin Pharmacol Ther. 2008 Jul;84(1):127-35 [PMID: 18253146]
  29. Clin Pharmacol Ther. 2009 Oct;86(4):387-95 [PMID: 19626001]
  30. CPT Pharmacometrics Syst Pharmacol. 2023 Dec;12(12):2038-2049 [PMID: 37750001]
  31. J Pharmacokinet Biopharm. 1995 Dec;23(6):651-72 [PMID: 8733951]
  32. J Pharmacokinet Pharmacodyn. 2012 Jun;39(3):263-71 [PMID: 22544471]
  33. CPT Pharmacometrics Syst Pharmacol. 2020 Feb;9(2):96-105 [PMID: 31877239]
  34. Diabetologia. 2021 Dec;64(12):2609-2652 [PMID: 34590174]
  35. Pharm Res. 2007 Feb;24(2):298-309 [PMID: 17009101]
  36. Clin Pharmacol Ther. 2021 Aug;110(2):401-408 [PMID: 33426670]
  37. J Pharmacokinet Pharmacodyn. 2005 Apr;32(2):261-81 [PMID: 16283538]
  38. J Pharmacokinet Pharmacodyn. 2009 Feb;36(1):81-99 [PMID: 19219538]
  39. CPT Pharmacometrics Syst Pharmacol. 2018 Apr;7(4):205-218 [PMID: 29493119]
  40. J Pharmacokinet Pharmacodyn. 2010 Aug;37(4):347-63 [PMID: 20652729]
  41. Br J Clin Pharmacol. 2003 Aug;56(2):173-83 [PMID: 12895190]
  42. CPT Pharmacometrics Syst Pharmacol. 2023 Nov;12(11):1738-1750 [PMID: 37165943]
  43. AAPS J. 2021 Feb 25;23(2):33 [PMID: 33630188]
  44. Cancer Chemother Pharmacol. 2018 Sep;82(3):395-406 [PMID: 29915982]
  45. J Pharmacokinet Pharmacodyn. 2019 Dec;46(6):591-604 [PMID: 31654267]
  46. J Pharmacokinet Pharmacodyn. 2021 Apr;48(2):241-251 [PMID: 33242184]
  47. J Pharmacokinet Pharmacodyn. 2017 Oct;44(5):425-436 [PMID: 28623612]
  48. AAPS J. 2019 Apr 26;21(4):60 [PMID: 31028495]
  49. J Pharmacokinet Pharmacodyn. 2007 Oct;34(5):711-26 [PMID: 17653836]

MeSH Term

Markov Chains
Humans
Models, Statistical
Drug Development

Word Cloud

Created with Highcharts 10.0.0MarkovmodelstutorialMarkovianfeaturesvaluevariablepresentobservationsvaluesdatamainmodelingDTMMCTMMchainstochasticprocessfutureconditionallyindependentpastgivenDatacharacterizedby:frequentrelativeexpectedchangesmanyconsecutivesame-categorysimilar-valueindividuallevelpositivecorrelationobservedcurrentpreviousdrugdevelopmentclinicalsettingsavailablecommonlyincreasinglyoftenmodeledusingelementsdedicatedpresentscharacteristicsevaluationsapplicationsvariousapproachesincludingdiscrete-timecontinuous-timehiddenitem-responsetheorymodelsub-modelsspecificemphasisuseordered-categoricalAlthoughbodywrittensoftware-neutralmannerannotatedNONMEMcodekeyincludedSupplementaryInformationpharmacometric

Similar Articles

Cited By