Genetic diversity assessment of clonal plant Rosa persica in China.
Na Li, Xuesen Liu, Xiaolong Zhang, Chenjie Zhang, Xinyu Lu, Chenyang Sun, Chao Yu, Le Luo
Author Information
Na Li: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
Xuesen Liu: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
Xiaolong Zhang: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
Chenjie Zhang: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
Xinyu Lu: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
Chenyang Sun: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
Chao Yu: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
Le Luo: Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China. Electronic address: luolebjfu@163.com.
Rosa persica is considered a clonal plant because it is mainly propagated by clonal growth. Due to environmental degradation and habitat devastation, R. persica has been listed as a national second-class protected plant in China. However, the absence of research on wild populations of R. persica has impeded progress in formulating efficient conservation strategies. In this study, we investigated the clonal dispersal distance of R. persica to accurately determine the genetic diversity and population structure of the wild population in Xinjiang. We suggested that 20 m was the threshold distance with which to distinguish between different genets of plants. Based on this, we collated sequencing data from a total of 70 different genets of plants from 117 test samples. Eight populations of R. persica were primarily categorized into three subgroups: BL (Bole), TC (Tacheng) and CG (Changji). Of these, the CG subgroup exhibited the most genetic diversity. This research is the first to illustrates the clonal dispersal distance of R. persica, thus providing valuable reference guidelines for understanding the reproductive characteristics of clonal plants. In addition, the genetic diversity of R. persica provides a theoretical foundation for the formulation of conservation policies.