Essential genes encoded by the mating-type locus of the human fungal pathogen .
Zhuyun Bian, Ziyan Xu, Anushka Peer, Yeseul Choi, Shelby J Priest, Konstantina Akritidou, Ananya Dasgupta, Tim A Dahlmann, Ulrich Kück, Minou Nowrousian, Matthew S Sachs, Sheng Sun, Joseph Heitman
Author Information
Zhuyun Bian: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.
Ziyan Xu: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.
Anushka Peer: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.
Yeseul Choi: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.
Shelby J Priest: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA. ORCID
Konstantina Akritidou: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.
Ananya Dasgupta: Department of Biology, Texas A&M University, College Station, Texas, USA.
Tim A Dahlmann: Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany.
Ulrich Kück: Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany.
Minou Nowrousian: Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Germany.
Matthew S Sachs: Department of Biology, Texas A&M University, College Station, Texas, USA.
Sheng Sun: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.
Joseph Heitman: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.
中文译文
English
Fungal sexual reproduction is controlled by the mating-type () locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen employs a bipolar mating-type system, with two mating types ( and α) determined by a single locus that is unusually large (~120 kb) and contains more than 20 genes. While several genes are associated with mating and sexual development, others control conserved cellular processes (e.g. cargo transport and protein synthesis), of which five (, , , , and ) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of , both alleles of the other four genes are indeed essential for cell viability. We further showed that while is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity . Our results demonstrate the presence of essential genes in the locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly-evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.
Genetics. 2020 Mar;214(3):703-717
[PMID: 31888949 ]
mBio. 2018 Oct 30;9(5):
[PMID: 30377286 ]
Curr Protoc Microbiol. 2019 Jun;53(1):e75
[PMID: 30661293 ]
Lancet Infect Dis. 2024 Aug;24(8):e495-e512
[PMID: 38346436 ]
PLoS Genet. 2012 Jul;8(7):e1002810
[PMID: 22792079 ]
Mycologia. 2013 Jan-Feb;105(1):1-27
[PMID: 23099518 ]
Trends Microbiol. 2004 May;12(5):208-12
[PMID: 15120139 ]
PLoS Pathog. 2012 Jan;8(1):e1002476
[PMID: 22253594 ]
Nat Methods. 2012 Mar 04;9(4):357-9
[PMID: 22388286 ]
Genetics. 2019 Aug;212(4):1241-1258
[PMID: 31175227 ]
J Cell Biol. 2008 Apr 7;181(1):119-30
[PMID: 18391073 ]
Cold Spring Harb Perspect Biol. 2014 Mar 01;6(3):
[PMID: 24591519 ]
Med Mycol. 2015 Apr;53(3):225-34
[PMID: 25541555 ]
PLoS Comput Biol. 2013;9(8):e1003118
[PMID: 23950696 ]
Genetics. 2018 Apr;208(4):1357-1372
[PMID: 29444806 ]
Fungal Biol Rev. 2015 Dec 1;29(3-4):108-117
[PMID: 26834823 ]
Annu Rev Genet. 2019 Dec 3;53:417-444
[PMID: 31537103 ]
Cytoskeleton (Hoboken). 2012 Oct;69(10):710-26
[PMID: 22736599 ]
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3108-3113
[PMID: 29507212 ]
Eukaryot Cell. 2002 Oct;1(5):704-18
[PMID: 12455690 ]
PLoS Biol. 2004 Dec;2(12):e384
[PMID: 15538538 ]
Genome Biol. 2014;15(12):550
[PMID: 25516281 ]
Curr Biol. 2003 Oct 14;13(20):R792-5
[PMID: 14561417 ]
PLoS Genet. 2006 Nov 3;2(11):e184
[PMID: 17083277 ]
Curr Opin Cell Biol. 2010 Feb;22(1):50-6
[PMID: 20031383 ]
Nat Biotechnol. 2019 Aug;37(8):907-915
[PMID: 31375807 ]
Methods. 2017 Aug 15;126:112-129
[PMID: 28579404 ]
PLoS Genet. 2014 Dec 11;10(12):e1004849
[PMID: 25503976 ]
Mol Cell. 2017 Dec 7;68(5):885-900.e6
[PMID: 29220654 ]
J Comput Biol. 2017 Nov;24(11):1138-1143
[PMID: 28715235 ]
Nat Commun. 2022 Mar 21;13(1):1490
[PMID: 35314699 ]
PLoS Pathog. 2024 Nov 19;20(11):e1012735
[PMID: 39561188 ]
Infect Immun. 2003 Sep;71(9):4831-41
[PMID: 12933823 ]
Genetics. 2020 Mar;214(3):635-649
[PMID: 31882399 ]
Nucleic Acids Res. 2019 Jul 9;47(12):e70
[PMID: 30926999 ]
Science. 2005 Feb 25;307(5713):1321-4
[PMID: 15653466 ]
BMC Genomics. 2012 Sep 27;13:511
[PMID: 23016559 ]
Microb Genom. 2015 Oct 30;1(4):e000033
[PMID: 28348817 ]
J Cell Biol. 1998 Sep 7;142(5):1301-12
[PMID: 9732290 ]
Lancet Infect Dis. 2022 Dec;22(12):1748-1755
[PMID: 36049486 ]
Microbiology (Reading). 2020 Sep;166(9):797-799
[PMID: 32956032 ]
PLoS Genet. 2014 Apr 17;10(4):e1004261
[PMID: 24743168 ]
Curr Genet. 2004 Oct;46(4):193-204
[PMID: 15309505 ]
Bioinformatics. 2013 Jan 1;29(1):15-21
[PMID: 23104886 ]
Annu Rev Genet. 2011;45:405-30
[PMID: 21942368 ]
Mol Biol Cell. 2008 Mar;19(3):1046-61
[PMID: 18172025 ]
Nat Methods. 2015 Feb;12(2):115-21
[PMID: 25633503 ]
Chem Biol. 2008 Apr;15(4):363-74
[PMID: 18420143 ]
Genetics. 2003 Apr;163(4):1315-25
[PMID: 12702677 ]
Genetics. 2010 May;185(1):153-63
[PMID: 20157004 ]
Cell Rep. 2020 Feb 25;30(8):2686-2698.e8
[PMID: 32101745 ]
Science. 2001 Oct 19;294(5542):555-9
[PMID: 11641490 ]
Cell. 2018 Mar 22;173(1):90-103.e19
[PMID: 29551269 ]
PLoS Biol. 2017 Aug 11;15(8):e2002527
[PMID: 28800596 ]
Genetics. 2018 Jun;209(2):567-578
[PMID: 29625994 ]
Mol Biol Cell. 2015 Apr 1;26(7):1211-24
[PMID: 25631819 ]
R37 AI039115/NIAID NIH HHS
R21 AI138158/NIAID NIH HHS
R01 AI039115/NIAID NIH HHS
R01 AI133654/NIAID NIH HHS
R01 AI050113/NIAID NIH HHS