Pathogens and Antimicrobial Resistance Genes in Household Environments: A Study of Soil Floors and Cow Dung in Rural Bangladesh.

Anna T Nguyen, Kalani Ratnasiri, Gabriella Barratt Heitmann, Sumaiya Tazin, Claire Anderson, Suhi Hanif, Afsana Yeamin, Abul Kasham Shoab, Ireen Sultana Shanta, Farjana Jahan, Sakib Hossain, Zahid Hayat Mahmud, Mohammad Jubair, Mustafizur Rahman, Mahbubur Rahman, Ayse Ercumen, Jade Benjamin-Chung
Author Information
  1. Anna T Nguyen: Department of Epidemiology & Population Health, Stanford University. ORCID
  2. Kalani Ratnasiri: Department of Epidemiology & Population Health, Stanford University. ORCID
  3. Gabriella Barratt Heitmann: Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
  4. Sumaiya Tazin: Department of Forestry and Environmental Resources, North Carolina State University.
  5. Claire Anderson: Department of Civil & Environmental Engineering, Stanford University. ORCID
  6. Suhi Hanif: Department of Epidemiology & Population Health, Stanford University.
  7. Afsana Yeamin: Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh.
  8. Abul Kasham Shoab: Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh.
  9. Ireen Sultana Shanta: Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh.
  10. Farjana Jahan: Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh.
  11. Sakib Hossain: Laboratory of Environmental Health, International Centre for Diarrhoeal Disease Research, Bangladesh.
  12. Zahid Hayat Mahmud: Laboratory of Environmental Health, International Centre for Diarrhoeal Disease Research, Bangladesh.
  13. Mohammad Jubair: Genomics Centre, International Centre for Diarrhoeal Disease Research, Bangladesh.
  14. Mustafizur Rahman: Genomics Centre, International Centre for Diarrhoeal Disease Research, Bangladesh. ORCID
  15. Mahbubur Rahman: Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh.
  16. Ayse Ercumen: Department of Forestry and Environmental Resources, North Carolina State University.
  17. Jade Benjamin-Chung: Department of Epidemiology & Population Health, Stanford University. ORCID

Abstract

In low- and middle-income countries, living in homes with soil floors and animal cohabitation may expose children to fecal organisms, increasing risk of enteric and antimicrobial-resistant infections. Our objective was to understand whether cow cohabitation in homes with soil floors in rural Bangladesh contributed to the presence and diversity of potential pathogens and antimicrobial resistance genes (ARGs) in the home. In 10 randomly selected households in rural Sirajganj District, we sampled floor soil and cow dung, which is commonly used as sealant in soil floors. We extracted DNA and performed shotgun metagenomic sequencing to explore potential pathogens and ARGs in each sample type. We detected 6 potential pathogens in soil only, 49 pathogens in cow dung only, and 167 pathogens in both soil and cow dung. Pathogen species with relative abundances >5% in both soil floors and cow dung from the same households included (N=8 households), (N=6), (N=2), and (N=1). Cow dung exhibited modestly higher pathogen genus richness compared to soil floors (Wilcoxon signed-rank test p=0.002). Using Bray-Curtis dissimilarity, pathogen species community composition differed between floors and cow dung (PERMANOVA p<0.001). All soil floors and cow dung samples contained ARGs against antibiotic classes including sulfonamides, rifamycin, aminoglycosides, lincosamides, and tetracycline. Paired floor and cow dung samples shared ARGs against rifamycin. Our findings support the development of interventions to reduce soil and animal feces exposure in rural, low-income settings.

References

  1. Vet World. 2019 Jul;12(7):984-993 [PMID: 31528022]
  2. Food Nutr Bull. 2013 Dec;34(4):369-77 [PMID: 24605686]
  3. Environ Microbiol. 2006 Mar;8(3):504-13 [PMID: 16478456]
  4. Zoonoses Public Health. 2015 Nov;62(7):569-78 [PMID: 25787116]
  5. Environ Sci Technol. 2019 Sep 3;53(17):10023-10033 [PMID: 31356066]
  6. Appl Environ Microbiol. 2020 Nov 10;86(23): [PMID: 32978137]
  7. PLOS Glob Public Health. 2024 Dec 18;4(12):e0003338 [PMID: 39693286]
  8. Int J Environ Health Res. 2002 Mar;12(1):41-52 [PMID: 11970814]
  9. J Expo Sci Environ Epidemiol. 2021 Feb;31(1):82-93 [PMID: 31673039]
  10. Clin Infect Dis. 2003 Feb 15;36(4):462-7 [PMID: 12567304]
  11. FEMS Microbiol Ecol. 2020 Oct 1;96(10): [PMID: 32816017]
  12. Biometrics. 2002 Sep;58(3):531-9 [PMID: 12229987]
  13. Antimicrob Agents Chemother. 2013 Jul;57(7):3348-57 [PMID: 23650175]
  14. Nat Rev Microbiol. 2022 May;20(5):257-269 [PMID: 34737424]
  15. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  16. Appl Environ Microbiol. 2022 Jul 26;88(14):e0075922 [PMID: 35862660]
  17. Trans R Soc Trop Med Hyg. 2014 Jun;108(6):313-25 [PMID: 24812065]
  18. Epidemiol Health. 2020;42:e2020034 [PMID: 32512665]
  19. Vet Clin North Am Food Anim Pract. 2018 Mar;34(1):133-154 [PMID: 29224803]
  20. PLoS Negl Trop Dis. 2019 Feb 11;13(2):e0007180 [PMID: 30742614]
  21. Nucleic Acids Res. 2023 Jan 6;51(D1):D690-D699 [PMID: 36263822]
  22. Environ Sci Technol. 2020 Nov 3;54(21):13828-13838 [PMID: 33078615]
  23. J Expo Sci Environ Epidemiol. 2020 Jan;30(1):205-216 [PMID: 30728484]
  24. Appl Environ Microbiol. 2018 Nov 30;84(24): [PMID: 30315075]
  25. J Appl Microbiol. 2002;93(5):800-9 [PMID: 12392526]
  26. Lancet Planet Health. 2020 Sep;4(9):e405-e415 [PMID: 32918886]
  27. mSphere. 2020 Jan 15;5(1): [PMID: 31941809]
  28. Adv Appl Microbiol. 2012;78:75-120 [PMID: 22305094]
  29. Environ Int. 2019 Oct;131:105059 [PMID: 31374443]
  30. Trans R Soc Trop Med Hyg. 2006 Dec;100(12):1146-50 [PMID: 16698054]
  31. APMIS. 2020 Mar;128(3):220-231 [PMID: 31709616]
  32. Waste Manag Res. 2022 Aug;40(8):1277-1284 [PMID: 34894886]
  33. Nat Commun. 2022 Mar 23;13(1):1553 [PMID: 35322038]
  34. Cureus. 2024 Feb 21;16(2):e54644 [PMID: 38389567]
  35. Curr Environ Health Rep. 2016 Jun;3(2):128-35 [PMID: 27022987]
  36. Environ Sci Technol. 2012 Jun 5;46(11):5736-43 [PMID: 22545817]
  37. Antibiotics (Basel). 2022 Mar 24;11(4): [PMID: 35453194]
  38. Sci Rep. 2023 Jun 28;13(1):10505 [PMID: 37380793]
  39. Environ Sci Technol. 2017 Aug 1;51(15):8725-8734 [PMID: 28686435]
  40. J Trop Med Hyg. 1992 Apr;95(2):95-103 [PMID: 1560490]
  41. Appl Environ Microbiol. 2006 Jan;72(1):612-21 [PMID: 16391098]
  42. Antibiotics (Basel). 2021 Sep 21;10(9): [PMID: 34572718]
  43. PLoS One. 2016 Jun 24;11(6):e0157780 [PMID: 27341102]
  44. Antibiotics (Basel). 2020 Jul 28;9(8): [PMID: 32731420]
  45. Foodborne Pathog Dis. 2011 Mar;8(3):337-55 [PMID: 21133795]
  46. Environ Sci Technol. 2016 May 3;50(9):4642-9 [PMID: 27045990]
  47. Environ Sci Technol. 2022 Nov 1;56(21):14875-14890 [PMID: 35947446]
  48. Heliyon. 2024 Jul 09;10(14):e34367 [PMID: 39114038]
  49. Expert Rev Anti Infect Ther. 2021 Dec;19(12):1543-1552 [PMID: 34383624]
  50. BMJ Open. 2025 Mar 3;15(3):e090703 [PMID: 40032381]
  51. Acta Vet Hung. 2014 Mar;62(1):1-12 [PMID: 24334080]
  52. J Appl Microbiol. 2017 Sep;123(3):570-581 [PMID: 28383815]
  53. Infect Control. 1985 Feb;6(2):52-8 [PMID: 3882590]
  54. J Trop Pediatr. 1994 Feb;40(1):53-4 [PMID: 8182786]
  55. J Food Prot. 2005 Jun;68(6):1147-53 [PMID: 15954700]
  56. Pediatrics. 1999 Jan;103(1):E1 [PMID: 9917481]
  57. Appl Environ Microbiol. 2007 Jan;73(1):156-63 [PMID: 17098918]
  58. Science. 2012 Aug 31;337(6098):1107-11 [PMID: 22936781]
  59. Environ Sci Technol Lett. 2016 Nov 8;3(11):393-398 [PMID: 32607385]
  60. Int J Environ Res Public Health. 2016 Aug 25;13(9): [PMID: 27571092]
  61. Int J Hyg Environ Health. 2019 Sep;222(8):1068-1076 [PMID: 31331788]
  62. Lancet Glob Health. 2024 Mar;12(3):e433-e444 [PMID: 38365415]
  63. Front Vet Sci. 2024 Jan 09;10:1331767 [PMID: 38264470]
  64. Arch Public Health. 2022 Jan 4;80(1):13 [PMID: 34983645]
  65. Lancet Microbe. 2023 Jul;4(7):e534-e543 [PMID: 37207684]
  66. Environ Pollut. 2021 Sep 15;285:117402 [PMID: 34051569]
  67. Clin Infect Dis. 2013 Sep;57(5):704-10 [PMID: 23723195]
  68. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  69. Int J Environ Res Public Health. 2020 Apr 28;17(9): [PMID: 32354184]
  70. Biometrics. 2006 Jun;62(2):361-71 [PMID: 16918900]
  71. Environ Microbiol. 2004 Sep;6(9):981-9 [PMID: 15305923]
  72. Nature. 2019 Apr;568(7752):391-394 [PMID: 30918405]
  73. Am J Infect Control. 2023 Nov;51(11S):A158-A163 [PMID: 37890947]

Grants

  1. F31 AI179107/NIAID NIH HHS
  2. R01 HD108196/NICHD NIH HHS

Word Cloud

Created with Highcharts 10.0.0soilcowdungfloorspathogensARGsruralpotentialhouseholdshomesanimalcohabitationBangladeshfloorspeciesCowpathogensamplesrifamycinlow-middle-incomecountrieslivingmayexposechildrenfecalorganismsincreasingriskentericantimicrobial-resistantinfectionsobjectiveunderstandwhethercontributedpresencediversityantimicrobialresistancegeneshome10randomlyselectedSirajganjDistrictsampledcommonlyusedsealantextractedDNAperformedshotgunmetagenomicsequencingexploresampletypedetected649167Pathogenrelativeabundances>5%includedN=8N=6N=2N=1exhibitedmodestlyhighergenusrichnesscomparedWilcoxonsigned-ranktestp=0002UsingBray-CurtisdissimilaritycommunitycompositiondifferedPERMANOVAp<0001containedantibioticclassesincludingsulfonamidesaminoglycosideslincosamidestetracyclinePairedsharedfindingssupportdevelopmentinterventionsreducefecesexposurelow-incomesettingsPathogensAntimicrobialResistanceGenesHouseholdEnvironments:StudySoilFloorsDungRural

Similar Articles

Cited By