Rhizosphere microbiome regulation: Unlocking the potential for plant growth.

Chenghua Luo, Yijun He, Yaping Chen
Author Information
  1. Chenghua Luo: Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
  2. Yijun He: Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
  3. Yaping Chen: Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.

Abstract

Rhizosphere microbial communities are essential for plant growth and health maintenance, but their recruitment and functions are affected by their interactions with host plants. Finding ways to use the interaction to achieve specific production purposes, so as to reduce the use of chemical fertilizers and pesticides, is an important research approach in the development of green agriculture. To demonstrate the importance of rhizosphere microbial communities and guide practical production applications, this review summarizes the outstanding performance of rhizosphere microbial communities in promoting plant growth and stress tolerance. We also discuss the effect of host plants on their rhizosphere microbes, especially emphasizing the important role of host plant species and genes in the specific recruitment of beneficial microorganisms to improve the plants' own traits. The aim of this review is to provide valuable insights into developing plant varieties that can consistently recruit specific beneficial microorganisms to improve crop adaptability and productivity, and thus can be applied to green and sustainable agriculture in the future.

Keywords

References

  1. Microbiome. 2023 May 22;11(1):109 [PMID: 37211607]
  2. Microbiome. 2018 Dec 26;6(1):231 [PMID: 30587246]
  3. ISME J. 2015 Mar 17;9(4):980-9 [PMID: 25350154]
  4. Microbiol Res. 2017 Dec;205:118-124 [PMID: 28942837]
  5. J Hazard Mater. 2023 Aug 15;456:131681 [PMID: 37245371]
  6. Front Microbiol. 2023 May 05;14:1163832 [PMID: 37213524]
  7. Front Plant Sci. 2022 Nov 24;13:1050104 [PMID: 36507415]
  8. Cell. 2021 Oct 28;184(22):5527-5540.e18 [PMID: 34644527]
  9. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):585-92 [PMID: 24379374]
  10. Nat Rev Microbiol. 2013 Nov;11(11):789-99 [PMID: 24056930]
  11. Hortic Res. 2023 May 19;10(6):uhad099 [PMID: 37427035]
  12. Plant Cell Environ. 2019 Jun;42(6):2028-2044 [PMID: 30646427]
  13. Front Microbiol. 2023 May 03;14:1152597 [PMID: 37206331]
  14. ISME J. 2018 Jun;12(6):1496-1507 [PMID: 29520025]
  15. ISME J. 2023 Jun;17(6):931-942 [PMID: 37037925]
  16. Science. 2021 Oct;374(6563):65-71 [PMID: 34591638]
  17. Nat Plants. 2021 Apr;7(4):481-499 [PMID: 33833418]
  18. Environ Sci Pollut Res Int. 2022 Apr;29(16):22843-22859 [PMID: 35050477]
  19. Nat Commun. 2024 Feb 23;15(1):1668 [PMID: 38395981]
  20. PLoS Biol. 2018 Feb 23;16(2):e2003862 [PMID: 29474469]
  21. Plant Cell Environ. 2023 Jun;46(6):1885-1899 [PMID: 36794528]
  22. Mol Ecol. 2019 Mar;28(5):1154-1169 [PMID: 30633416]
  23. Microb Biotechnol. 2021 Mar;14(2):488-502 [PMID: 32762153]
  24. Cell Host Microbe. 2020 Dec 9;28(6):825-837.e6 [PMID: 33027611]
  25. Nature. 2017 Mar 23;543(7646):513-518 [PMID: 28297714]
  26. Annu Rev Phytopathol. 2017 Aug 4;55:61-83 [PMID: 28489497]
  27. Annu Rev Phytopathol. 2014;52:347-75 [PMID: 24906124]
  28. Sci Rep. 2020 Aug 17;10(1):13859 [PMID: 32807801]
  29. J Microbiol Biotechnol. 2020 Jan 28;30(1):118-126 [PMID: 31650772]
  30. Front Plant Sci. 2023 May 30;14:1163271 [PMID: 37324672]
  31. Curr Microbiol. 2020 Oct;77(10):2713-2723 [PMID: 32488407]
  32. Front Microbiol. 2022 Sep 23;13:1015038 [PMID: 36212858]
  33. Nat Commun. 2022 Jun 16;13(1):3228 [PMID: 35710629]
  34. Sci Total Environ. 2022 Sep 1;837:155801 [PMID: 35561922]
  35. ISME J. 2014 Apr;8(4):790-803 [PMID: 24196324]
  36. FEMS Microbiol Rev. 2024 Jan 12;48(1): [PMID: 38093453]
  37. Mol Plant. 2023 May 1;16(5):849-864 [PMID: 36935607]
  38. Mol Plant Microbe Interact. 2021 May;34(5):462-469 [PMID: 33534602]
  39. Microbiome. 2023 Apr 20;11(1):79 [PMID: 37076924]
  40. J Hazard Mater. 2023 Aug 5;455:131621 [PMID: 37187122]
  41. Sci Total Environ. 2022 Sep 10;838(Pt 3):156484 [PMID: 35667435]
  42. Saudi J Biol Sci. 2019 Sep;26(6):1291-1297 [PMID: 31516360]
  43. Front Microbiol. 2023 Apr 17;14:1103550 [PMID: 37138641]
  44. Microbiol Res. 2023 May;270:127344 [PMID: 36878090]
  45. Front Plant Sci. 2022 Sep 20;13:988442 [PMID: 36212345]
  46. Nat Plants. 2021 Aug;7(8):1078-1092 [PMID: 34226690]
  47. Nat Microbiol. 2018 Apr;3(4):470-480 [PMID: 29556109]
  48. Plant Commun. 2019 Sep 16;1(1):100003 [PMID: 33404537]
  49. Sci Bull (Beijing). 2020 Jun 30;65(12):983-986 [PMID: 36659026]
  50. Ecotoxicol Environ Saf. 2023 Jan 1;249:114420 [PMID: 36521270]
  51. Nat Plants. 2015;1(6): [PMID: 27019743]
  52. Plant Biotechnol J. 2022 Oct;20(10):1874-1887 [PMID: 35668676]
  53. Microb Biotechnol. 2023 Jun;16(6):1373-1392 [PMID: 36965164]
  54. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7996-E8005 [PMID: 27864511]
  55. mSystems. 2020 Nov 24;5(6): [PMID: 33234605]
  56. Int J Mol Sci. 2024 Jul 16;25(14): [PMID: 39063028]
  57. New Phytol. 2022 Nov;236(3):1168-1181 [PMID: 35927946]
  58. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  59. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5213-E5222 [PMID: 29686086]
  60. Sci Total Environ. 2023 Sep 15;891:164375 [PMID: 37245813]
  61. Mol Plant. 2023 Sep 4;16(9):1379-1395 [PMID: 37563832]
  62. Plant Mol Biol. 2016 Apr;90(6):635-44 [PMID: 26085172]
  63. Nat Biotechnol. 2019 Jun;37(6):676-684 [PMID: 31036930]
  64. Microbiome. 2018 Jun 19;6(1):110 [PMID: 29921326]
  65. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2450-E2459 [PMID: 28275097]
  66. Science. 2011 May 27;332(6033):1097-100 [PMID: 21551032]
  67. Science. 2019 Nov 1;366(6465):606-612 [PMID: 31672892]
  68. Sci Total Environ. 2023 Jul 20;883:163708 [PMID: 37105481]
  69. Front Microbiol. 2022 Dec 22;13:1042944 [PMID: 36619999]
  70. ISME J. 2022 Oct;16(10):2448-2456 [PMID: 35869387]
  71. J Hazard Mater. 2023 Sep 5;457:131752 [PMID: 37290353]
  72. Plant Physiol. 2008 Nov;148(3):1547-56 [PMID: 18820082]
  73. Chemosphere. 2023 Jan;310:136784 [PMID: 36241104]
  74. Annu Rev Plant Biol. 2006;57:233-66 [PMID: 16669762]
  75. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  76. Nat Rev Mol Cell Biol. 2022 Oct;23(10):680-694 [PMID: 35513717]
  77. Cell Host Microbe. 2015 Mar 11;17(3):392-403 [PMID: 25732064]
  78. Front Microbiol. 2023 May 25;14:1168179 [PMID: 37303801]
  79. BMC Microbiol. 2019 Sep 2;19(1):201 [PMID: 31477026]
  80. Front Plant Sci. 2022 Nov 22;13:1041561 [PMID: 36483951]
  81. Microbiome. 2023 Mar 31;11(1):70 [PMID: 37004105]
  82. Cell. 2016 Apr 7;165(2):464-74 [PMID: 26997485]
  83. PLoS One. 2013;8(2):e56329 [PMID: 23457551]
  84. J Agric Food Chem. 2020 May 6;68(18):5024-5038 [PMID: 32255613]
  85. Mycorrhiza. 2016 Nov;26(8):879-893 [PMID: 27456042]
  86. Sci Total Environ. 2022 Oct 20;844:157132 [PMID: 35798115]
  87. Microbiome. 2022 Dec 15;10(1):227 [PMID: 36517876]
  88. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7368-7373 [PMID: 29941552]
  89. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]
  90. Nat Microbiol. 2021 Sep;6(9):1150-1162 [PMID: 34312531]
  91. Microbiome. 2022 Oct 21;10(1):177 [PMID: 36271396]
  92. Commun Biol. 2023 Jan 11;6(1):27 [PMID: 36631600]
  93. Nat Commun. 2022 Jun 16;13(1):3443 [PMID: 35710760]
  94. Microbiome. 2021 Sep 15;9(1):187 [PMID: 34526096]
  95. Ecol Lett. 2014 Jun;17(6):717-26 [PMID: 24698177]
  96. Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2221508120 [PMID: 37018204]
  97. Front Microbiol. 2023 Jan 10;13:1070817 [PMID: 36704567]

Word Cloud

Created with Highcharts 10.0.0plantRhizospheremicrobialcommunitiesgrowthhostspecificrhizospheremicroorganismsrecruitmentplantsuseproductionimportantgreenagriculturereviewbeneficialimprovecanessentialhealthmaintenancefunctionsaffectedinteractionsFindingwaysinteractionachievepurposesreducechemicalfertilizerspesticidesresearchapproachdevelopmentdemonstrateimportanceguidepracticalapplicationssummarizesoutstandingperformancepromotingstresstolerancealsodiscusseffectmicrobesespeciallyemphasizingrolespeciesgenesplants'traitsaimprovidevaluableinsightsdevelopingvarietiesconsistentlyrecruitcropadaptabilityproductivitythusappliedsustainablefuturemicrobiomeregulation:UnlockingpotentialPGPRRegulatingmicroorganism

Similar Articles

Cited By